A082654 Order of 4 mod n-th prime: least k such that prime(n) divides 4^k-1, n >= 2.
0, 1, 2, 3, 5, 6, 4, 9, 11, 14, 5, 18, 10, 7, 23, 26, 29, 30, 33, 35, 9, 39, 41, 11, 24, 50, 51, 53, 18, 14, 7, 65, 34, 69, 74, 15, 26, 81, 83, 86, 89, 90, 95, 48, 98, 99, 105, 37, 113, 38, 29, 119, 12, 25, 8, 131, 134, 135, 46, 35, 47, 146, 51, 155, 78, 158
Offset: 1
Examples
4th prime is 7 and mod 7, 4^3 = 1, but not 4^1 or 4^2, so a(4) = 3. n = 4: prime(4) = 7, 2^6 - 1 = 63 = 3*21 == 0 (mod 21), but not 2^k - 1 for lower exponents k >= 1, therefore ord(2, 3*7) = 6 and a(4) = 3. - _Wolfdieter Lang_, Apr 10 2020
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1964; Table 48, pages 98-99.
- John H. Conway & R. K. Guy, The Book of Numbers, Springer-Verlag, 1996, pages 207-208, Periodic Points.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
- G. Vostrov, R. Opiata, Computer modeling of dynamic processes in analytic number theory, Electrical and Computer Systems (Електротехнічні та комп'ютерні системи) 2018, No. 28, Issue 104, 240-247.
Crossrefs
Programs
-
GAP
A000040:=Filtered([1..350],IsPrime);; List([1..Length(A000040)],n->OrderMod(4,A000040[n])); # Muniru A Asiru, Feb 07 2019
-
Mathematica
Join[{0}, Table[MultiplicativeOrder[4, Prime[n]], {n, 2, 100}]]
-
PARI
a(n)=if(n>1, znorder(Mod(4,prime(n))), 0) \\ Charles R Greathouse IV, Sep 07 2016
Formula
a(1) = 0, and a(n) = order(4, prime(n)), also used exp_{prime(n)}(4), that is least exponent k >= 1 for which 4^k is congruent to 1 mod prime(n), for n >= 2. prime(n) = A000040(n). [rewritten by Wolfdieter Lang, Apr 10 2020]
From Wolfdieter Lang, Apr 10 2020: (Start)
a(n) = A003558(prime(n)), for n >= 2.
a(n) = (1/2)*order(2, 3*prime(n)), for n >= 3. [Proof uses 4^k - 1 = (1+3)^k - 1 == 0 (mod 3), for k >= 0.] (End)
From Jianing Song, May 13 2024: (Start)
a(n) <= (prime(n) - 1)/2. Those prime(n) for which a(n) = (prime(n) - 1)/2 are listed in A216371. (End)
Extensions
More terms from Reinhard Zumkeller, May 17 2003
Comments