cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A014664 Order of 2 modulo the n-th prime.

Original entry on oeis.org

2, 4, 3, 10, 12, 8, 18, 11, 28, 5, 36, 20, 14, 23, 52, 58, 60, 66, 35, 9, 39, 82, 11, 48, 100, 51, 106, 36, 28, 7, 130, 68, 138, 148, 15, 52, 162, 83, 172, 178, 180, 95, 96, 196, 99, 210, 37, 226, 76, 29, 119, 24, 50, 16, 131, 268, 135, 92, 70, 94, 292, 102, 155, 156, 316
Offset: 2

Views

Author

Keywords

Comments

In other words, a(n), n >= 2, is the least k such that prime(n) divides 2^k-1.
Concerning the complexity of computing this sequence, see for example Bach and Shallit, p. 115, exercise 8.
Also A002326((p_n-1)/2). Conjecture: If p_n is not a Wieferich prime (1093, 3511, ...) then A002326(((p_n)^k-1)/2) = a(n)*(p_n)^(k-1). - Vladimir Shevelev, May 26 2008
If for distinct i,j,...,k we have a(i)=a(j)=...=a(k) then the number N = p_i*p_j*...*p_k is in A001262 and moreover A137576((N-1)/2) = N. For example, a(16)=a(37)=a(255)=52. Therefore we could take N = p_16*p_37*p_255 = 53*157*1613 = 13421773. - Vladimir Shevelev, Jun 14 2008
Also degree of the irreducible polynomial factors for the polynomial (x^p+1)/(x+1) over GF(2), where p is the n-th prime. - V. Raman, Oct 04 2012
Is this the same as the smallest k > 1 not already in the sequence such that p = prime(n) is a factor of 2^k-1 (A270600)? If the answer is yes, is the sequence a permutation of the positive integers > 1? - Felix Fröhlich, Feb 21 2016. Answer: No, it is easy to prove that 6 is missing and obviously 11 appears twice. - N. J. A. Sloane, Feb 21 2016
pi(A112927(m)) is the index at which a given number m first appears in this sequence. - M. F. Hasler, Feb 21 2016

Examples

			2^2 == 1 (mod 3) and so a(2) = 2;
2^4 == 1 (mod 5) and so a(3) = 4;
2^3 == 1 (mod 7) and so a(4) = 3;
2^10 == 1 (mod 11) and so a(5) = 10; etc.
[Conway & Guy, p. 166]: Referring to the work of Euler, 1/13 in base 2 = 0.000100111011...; (cycle length of 12). - _Gary W. Adamson_, Aug 22 2009
		

References

  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I.
  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966; Table 48, page 98, "Exponents to Which a Belongs, MOD p and MOD p^n.
  • John H. Conway and Richard Guy, "The Book of Numbers", Springer-Verlag, 1996; p. 166: "How does the Cycle Length Change with the Base?". [From Gary W. Adamson, Aug 22 2009]
  • S. K. Sehgal, Group rings, pp. 455-541 in Handbook of Algebra, Vol. 3, Elsevier, 2003; see p. 493.

Crossrefs

Cf. A002326 (order of 2 mod 2n+1), A001122 (full reptend primes in base 2), A065941, A112927.

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);; a:=List([2..Length(P)],n->OrderMod(2,P[n]));; Print(a); # Muniru A Asiru, Jan 29 2019
    
  • Maple
    with(numtheory): [ seq(order(2,ithprime(n)), n=2..60) ];
  • Mathematica
    Reap[Do[p=Prime[i];Do[If[PowerMod[2,k,p]==1,Print[{i,k}];Sow[{i,k}];Goto[ni]],{k,1,10^6}];Label[ni],{i,2,5001}]][[2,1]] (* Zak Seidov, Jan 26 2009 *)
    Table[MultiplicativeOrder[2, Prime[n]], {n, 2, 70}] (* Jean-François Alcover, Dec 10 2015 *)
  • PARI
    a(n)=if(n<0,0,k=1;while((2^k-1)%prime(n)>0,k++);k)
    
  • PARI
    A014664(n)=znorder(Mod(2, prime(n))) \\ Nick Hobson, Jan 08 2007, edited by M. F. Hasler, Feb 21 2016
    
  • PARI
    forprime(p=3, 800, print(factormod((x^p+1)/(x+1), 2, 1)[1, 1])) \\ V. Raman, Oct 04 2012
    
  • Python
    from sympy import n_order, prime
    def A014664(n): return n_order(2,prime(n)) # Chai Wah Wu, Nov 09 2023

Formula

a(n) = (A000040(n)-1)/A001917(n); a(A072190(n)) = A001122(n) - 1. - Benoit Cloitre, Jun 06 2004

Extensions

More terms from Benoit Cloitre, Apr 11 2003

A062117 Order of 3 mod n-th prime.

Original entry on oeis.org

1, 0, 4, 6, 5, 3, 16, 18, 11, 28, 30, 18, 8, 42, 23, 52, 29, 10, 22, 35, 12, 78, 41, 88, 48, 100, 34, 53, 27, 112, 126, 65, 136, 138, 148, 50, 78, 162, 83, 172, 89, 45, 95, 16, 196, 198, 210, 222, 113, 57, 232, 119, 120, 125, 256, 131, 268, 30, 69, 280, 282, 292, 34
Offset: 1

Views

Author

Olivier Gérard, Jun 06 2001

Keywords

Examples

			The 3rd prime is 5 and mod 5, 3^4 = 1, so a(3) = 4.
		

Crossrefs

Cf. A019334 (full reptend primes in base 3).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(3,A000040[n])); # Muniru A Asiru, Feb 07 2019
    
  • Mathematica
    Table[With[{p=Prime[n]},If[p==3,0,MultiplicativeOrder[3,p]]],{n,63}] (* Ray Chandler, Apr 06 2016 *)
  • PARI
    a(n,{base=3}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024
  • Python
    from sympy import n_order, prime
    def A062117(n): return n_order(3,prime(n)) if n != 2 else 0 # Chai Wah Wu, Nov 10 2023
    

A211241 Order of 5 mod n-th prime: least k such that prime(n) divides 5^k-1.

Original entry on oeis.org

1, 2, 0, 6, 5, 4, 16, 9, 22, 14, 3, 36, 20, 42, 46, 52, 29, 30, 22, 5, 72, 39, 82, 44, 96, 25, 102, 106, 27, 112, 42, 65, 136, 69, 37, 75, 156, 54, 166, 172, 89, 15, 19, 192, 196, 33, 35, 222, 226, 114, 232, 119, 40, 25, 256, 262, 67, 27, 276, 140, 282, 292
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A019335 (full reptend primes in base 5).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(5,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Mathematica
    nn = 5; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=5}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

A211242 Order of 6 mod n-th prime: least k such that prime(n) divides 6^k-1.

Original entry on oeis.org

0, 0, 1, 2, 10, 12, 16, 9, 11, 14, 6, 4, 40, 3, 23, 26, 58, 60, 33, 35, 36, 78, 82, 88, 12, 10, 102, 106, 108, 112, 126, 130, 136, 23, 37, 150, 156, 27, 83, 43, 178, 60, 19, 96, 14, 198, 105, 222, 226, 228, 232, 17, 20, 250, 256, 131, 134, 270, 276, 56, 141
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A019336 (full reptend primes in base 6).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(6,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Maple
    A211242 := proc(n)
        if n<= 2 then
            0 ;
        else
            numtheory[order](6,ithprime(n)) ;
        end if;
    end proc:
    seq(A211242(n),n=1..80) ; # R. J. Mathar, Jul 17 2024
  • Mathematica
    nn = 6; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=6}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

A211245 Order of 9 mod n-th prime: least k such that prime(n) divides 9^k-1.

Original entry on oeis.org

1, 0, 2, 3, 5, 3, 8, 9, 11, 14, 15, 9, 4, 21, 23, 26, 29, 5, 11, 35, 6, 39, 41, 44, 24, 50, 17, 53, 27, 56, 63, 65, 68, 69, 74, 25, 39, 81, 83, 86, 89, 45, 95, 8, 98, 99, 105, 111, 113, 57, 116, 119, 60, 125, 128, 131, 134, 15, 69, 140, 141, 146, 17, 155, 39
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(9,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Mathematica
    nn = 9; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=9}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

Formula

From Jianing Song, May 13 2024: (Start)
a(n) = A062117(n)/gcd(2, A062117(n)).
a(n) <= (prime(n) - 1)/2. Those prime(n) for which a(n) = (prime(n) - 1)/2 are listed in A364867. (End)

A211243 Order of 7 mod n-th prime: least k such that prime(n) divides 7^k-1.

Original entry on oeis.org

1, 1, 4, 0, 10, 12, 16, 3, 22, 7, 15, 9, 40, 6, 23, 26, 29, 60, 66, 70, 24, 78, 41, 88, 96, 100, 51, 106, 27, 14, 126, 65, 68, 69, 74, 150, 52, 162, 83, 172, 178, 12, 10, 24, 98, 99, 210, 37, 113, 228, 116, 238, 240, 125, 256, 262, 268, 135, 138, 20, 141, 292
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A019337 (full reptend primes in base 7).
Row lengths of A201911. - Michel Marcus, Feb 04 2019

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(7,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Mathematica
    nn = 7; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=7}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

A211244 Order of 8 mod n-th prime: least k such that prime(n) divides 8^k-1.

Original entry on oeis.org

0, 2, 4, 1, 10, 4, 8, 6, 11, 28, 5, 12, 20, 14, 23, 52, 58, 20, 22, 35, 3, 13, 82, 11, 16, 100, 17, 106, 12, 28, 7, 130, 68, 46, 148, 5, 52, 54, 83, 172, 178, 60, 95, 32, 196, 33, 70, 37, 226, 76, 29, 119, 8, 50, 16, 131, 268, 45, 92, 70, 94, 292, 34, 155, 52
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A053451 (order of 8 mod 2n+1), A019338 (full reptend primes in base 8).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(8,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Mathematica
    nn = 8; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=8}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

Formula

a(n) = A014664(n)/gcd(3, A014664(n)). - Jianing Song, May 13 2024

A216371 Odd primes with one coach: primes p such that A135303((p-1)/2) = 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 317, 347, 349, 359, 367, 373, 379, 383, 389, 419, 421, 443, 461, 463, 467, 479, 487
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2012

Keywords

Comments

Given that prime p has only one coach, the corresponding value of k in A003558 must be (p-1)/2, and vice versa. Using the Coach theorem of Jean Pedersen et al., phi(b) = 2 * c * k, with b odd. Let b = p, prime. Then phi(p) = (p-1), and k must be (p-1)/2 iff c = 1. Or, phi(p) = (p-1) = 2 * 1 * (p-1)/2.
Conjecture relating to odd integers: iff an integer is in the set A216371 and is either of the form 4q - 1 or 4q + 1, (q>0); then the top row of its coach (cf. A003558) is composed of a permutation of the first q odd integers. Examples: 11 is of the form 4q - 1, q = 3; with the top row of its coach [1, 5, 3]. 13 is of the form 4q + 1, q = 3; so has a coach of [1, 3, 5]. 37 is of the form 4q + 1, q = 9; so has a coach with the top row composed of a permutation of the first 9 odd integers: [1, 9, 7, 15, 11, 13, 3, 17, 5]. - Gary W. Adamson, Sep 08 2012
Odd primes p such that 2^m is not congruent to 1 or -1 (mod p) for 0 < m < (p-1)/2. - Charles R Greathouse IV, Sep 15 2012
These are also the odd primes a(n) for which there is only one periodic Schick sequence (see the reference, and also the Brändli and Beyne link, eq. (2) for the recurrence but using various inputs. See also a comment in A332439). This sequence has primitive period length (named pes in Schick's book) A003558((a(n)-1)/2) = A005034(a(n)) = A000010(a(n))/2 = (a(n) - 1)/2, for n >= 1. - Wolfdieter Lang, Apr 09 2020
From Jianing Song, Dec 24 2022: (Start)
Primes p such that the multiplicative order of 4 modulo p is (p-1)/2. Proof of equivalence: let ord(a,k) be the multiplicative of a modulo k.
If 2^m is not 1 or -1 (mod p) for 0 < m < (p-1)/2, then ord(2,p) is either p-1 or (p-1)/2. If ord(2,p) = p-1, then ord(4,p) = (p-1)/2. If ord(2,p) = (p-1)/2, then p == 3 (mod 4), otherwise 2^((p-1)/4) == -1 (mod p), so ord(4,p) = (p-1)/2.
Conversely, if ord(4,p) = (p-1)/2, then ord(2,p) = p-1, or ord(2,p) = (p-1)/2 and p == 3 (mod 4) (otherwise ord(4,p) = (p-1)/4). In the first case, (p-1)/2 is the smallest m > 0 such that 2^m == +-1 (mod p); in the second case, since (p-1)/2 is odd, 2^m == -1 (mod p) has no solution. In either case, so 2^m is not 1 or -1 (mod p) for 0 < m < (p-1)/2.
{(a(n)-1)/2} is the sequence of indices of fixed points of A053447.
A prime p is a term if and only if one of the two following conditions holds: (a) 2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of 2 modulo p is (p-1)/2 (in this case, we have p == 7 (mod 8) since 2 is a quadratic residue modulo p). (End)
From Jianing Song, Aug 11 2023: (Start)
Primes p such that 2 or -2 (or both) is a primitive root modulo p. Proof of equivalence: if ord(2,p) = p-1, then clearly ord(4,p) = (p-1)/2. If ord(-2,p) = p-1, then we also have ord(4,p) = (p-1)/2. Conversely, suppose that ord(4,p) = (p-1)/2, then ord(2,p) = p-1 or (p-1)/2, and ord(-2,p) = p-1 or (p-1)/2. If ord(2,p) = ord(-2,p) = (p-1)/2, then we have that (p-1)/2 is odd and (-1)^((p-1)/2) == 1 (mod p), a contradiction.
A prime p is a term if and only if one of the two following conditions holds: (a) -2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of -2 modulo p is (p-1)/2 (in this case, we have p == 3 (mod 8) since -2 is a quadratic residue modulo p). (End)
No terms are congruent to 1 modulo 8, since otherwise we would have 4^((p-1)/4) = (+-2)^((p-1)/2) == 1 (mod p). - Jianing Song, May 14 2024
The n-th prime A000040(n) is a term iff A376010(n) = 2. - Max Alekseyev, Sep 05 2024

Examples

			Prime 23 has a k value of 11 = (23 - 1)/2 (Cf. A003558(11)). It follows that 23 has only one coach (A135303(11) = 1). 23 is thus in the set. On the other hand 31 is not in the set since A135303(15) shows 3 coaches, with A003558(15) = 5.
13 is in the set since A135303(6) = 1; but 17 isn't since A135303(8) = 2.
		

References

  • P. Hilton and J. Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, 2010, Cambridge University Press, pages 260-264.
  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.

Crossrefs

Union of A001122 and A105874.
A105876 is the subsequence of terms congruent to 3 modulo 4.
Complement of A268923 in the set of odd primes.
Cf. A082654 (order of 4 mod n-th prime), A000010, A000040, A003558, A005034, A053447, A054639, A135303, A364867, A376010.

Programs

  • Maple
    isA216371 := proc(n)
        if isprime(n) then
            if A135303((n-1)/2) = 1 then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A216371 := proc(n)
        local p;
        if n = 1 then
            3;
        else
            p := nextprime(procname(n-1)) ;
            while true do
                if isA216371(p) then
                    return p;
                end if;
                p := nextprime(p) ;
            end do:
        end if;
    end proc:
    seq(A216371(n),n=1..40) ; # R. J. Mathar, Dec 01 2014
  • Mathematica
    Suborder[a_, n_] := If[n > 1 && GCD[a, n] == 1, Min[MultiplicativeOrder[a, n, {-1, 1}]], 0]; nn = 150; Select[Prime[Range[2, nn]], EulerPhi[#]/(2*Suborder[2, #]) == 1 &] (* T. D. Noe, Sep 18 2012 *)
    f[p_] := Sum[Cos[2^n Pi/((2 p + 1))], {n, p}]; 1 + 2 * Select[Range[500], Reduce[f[#] == -1/2, Rationals] &]; (* Gerry Martens, May 01 2016 *)
  • PARI
    is(p)=for(m=1,p\2-1, if(abs(centerlift(Mod(2,p)^m))==1, return(0))); p>2 && isprime(p) \\ Charles R Greathouse IV, Sep 18 2012
    
  • PARI
    is(p) = isprime(p) && (p>2) && znorder(Mod(4,p)) == (p-1)/2 \\ Jianing Song, Dec 24 2022

Formula

a(n) = 2*A054639(n) + 1. - L. Edson Jeffery, Dec 18 2012

A337878 a(n) is the smallest m > 0 such that the n-th prime divides Jacobsthal(m).

Original entry on oeis.org

3, 4, 6, 5, 12, 8, 9, 22, 28, 10, 36, 20, 7, 46, 52, 29, 60, 33, 70, 18, 78, 41, 22, 48, 100, 102, 53, 36, 28, 14, 65, 68, 69, 148, 30, 52, 81, 166, 172, 89, 180, 190, 96, 196, 198, 105, 74, 113, 76, 58, 238, 24, 25, 16, 262, 268, 270, 92, 35, 47, 292, 51
Offset: 2

Views

Author

A.H.M. Smeets, Sep 27 2020

Keywords

Comments

All positive Jacobsthal numbers are odd, so the index starts at n = 2.
The set of primitive prime factors of J_k is given by {A000040(j) | a(j) = k}.
By definition, a(n) is the multiplicative order of -2 modulo the n-th prime for n > 2. - Jianing Song, Jun 20 2025

Examples

			The 4th prime number is 7, and 7 divides 21 which is Jacobsthal(6), so a(4) = 6. The second prime number, 3, divides Jacobsthal(6) as well, but it divides also the smaller Jacobsthal(3), i.e., a(2) = 3.
		

Crossrefs

Cf. A000040 (primes), A001045 (Jacobsthal numbers), A001602 (similar for Fibonacci numbers), A105874 (primes having primitive root -2), A129738.
Cf. multiplicative orders of 2..10: A014664, A062117, A082654, A211241, A211242, A211243, A211244, A211245, A002371.
Cf. multiplicative orders of -2..-10: this sequence (if first term 1), A380482, A380531, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    m = 300; j = LinearRecurrence[{1, 2}, {3, 5}, m]; s = {}; p = 3; While[(ind = Select[Range[m], Divisible[j[[#]], p] &, 1]) != {}, AppendTo[s, ind[[1]] + 2]; p = NextPrime[p]]; s (* Amiram Eldar, Sep 28 2020 *)
  • PARI
    J(n) = (2^n - (-1)^n)/3; \\ A001045
    a(n) = {my(k=1, p=prime(n)); while (J(k) % p, k++); k;} \\ Michel Marcus, Sep 29 2020
  • Python
    n = 1
    while n < 63:
        n, J0, J1, a = n+1, 3, 1, 3
        p = A000040(n)
        J0 = J0%p
        while J0 != 0:
            J0, J1, a = (J0+2*J1)%p, J0, a+1
        print(n,a)
    

Formula

A000040(n) == 1 (mod a(n)) for n > 2.

A380482 a(n) is the multiplicative order of -3 modulo prime(n); a(2) = 0 for completion.

Original entry on oeis.org

1, 0, 4, 3, 10, 6, 16, 9, 22, 28, 15, 9, 8, 21, 46, 52, 58, 5, 11, 70, 12, 39, 82, 88, 48, 100, 17, 106, 54, 112, 63, 130, 136, 69, 148, 25, 39, 81, 166, 172, 178, 90, 190, 16, 196, 99, 105, 111, 226, 114, 232, 238, 120, 250, 256, 262, 268, 15, 138, 280
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105875 (primes having primitive root -3).
Cf. bases -2..-10: A337878 (if first term 1), this sequence, A380531, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380482[n_] := If[n == 2, 0, MultiplicativeOrder[-3, Prime[n]]];
    Array[A380482, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-3}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))
Showing 1-10 of 23 results. Next