cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082694 Partial sums of A082693.

Original entry on oeis.org

1, 3, 4, 6, 10, 12, 13, 15, 19, 27, 31, 33, 34, 36, 40, 48, 64, 72, 76, 78, 79, 81, 85, 93, 109, 141, 157, 165, 169, 171, 172, 174, 178, 186, 202, 234, 298, 330, 346, 354, 358, 360, 361, 363, 367, 375, 391, 423, 487, 615, 679, 711, 727, 735, 739, 741, 742, 744
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Programs

  • Mathematica
    f[n_]:=Module[{st=2^Range[0,n]},Join[st,Reverse[Most[Rest[st]]]]]; Accumulate[ Flatten[Array[f,10]]] (* Harvey P. Dale, May 09 2012 *)

A116588 Array read by antidiagonals: T(n,k) = max(2^(n - k), 2^(k - n)).

Original entry on oeis.org

1, 2, 2, 4, 1, 4, 8, 2, 2, 8, 16, 4, 1, 4, 16, 32, 8, 2, 2, 8, 32, 64, 16, 4, 1, 4, 16, 64, 128, 32, 8, 2, 2, 8, 32, 128, 256, 64, 16, 4, 1, 4, 16, 64, 256, 512, 128, 32, 8, 2, 2, 8, 32, 128, 512, 1024, 256, 64, 16, 4, 1, 4, 16, 64, 256, 1024, 2048, 512, 128
Offset: 0

Views

Author

Roger L. Bagula, Mar 27 2006

Keywords

Comments

This array is an infinite symmetric Toeplitz matrix whose first row is the powers of two A000079. - Franck Maminirina Ramaharo, Sep 08 2018

Examples

			Array begins:
    1   2   4   8  16  32  64  128 ...
    2   1   2   4   8  16  32   64 ...
    4   2   1   2   4   8  16   32 ...
    8   4   2   1   2   4   8   16 ...
   16   8   4   2   1   2   4    8 ...
   32  16   8   4   2   1   2    4 ...
   64  32  16   8   4   2   1    2 ...
  128  64  32  16   8   4   2    1 ...
  ... reformatted and extended. - _Franck Maminirina Ramaharo_, Sep 08 2018
		

References

  • M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, New York, 1985, p. 62.

Crossrefs

Antidiagonal sums: A084639.

Programs

  • Mathematica
    row[n_] := Table[Max[2^(r - q), 2^(q - r)], {r, 1, n}, {q, 1, n}];
    TableForm[row[10]] (* Franck Maminirina Ramaharo, Sep 08 2018 *)
  • Maxima
    T(n, k) := max(2^(n - k), 2^(k - n))$
    for n:0 thru 10 do (print(makelist(T(n,k), k, 0, 10))); /* Franck Maminirina Ramaharo, Sep 08 2018 */

Formula

From Franck Maminirina Ramaharo, Sep 08 2018: (Start)
T(n,k) = A130321(n,k) for 0 <= k <= n and A130321(k,n) otherwise.
G.f.: (1 - 4*x*y)/((1 - 2*x)*(1 - 2*y)*(1 - x*y)). (End)

Extensions

Edited, new name and extended by Franck Maminirina Ramaharo, Sep 08 2018
Showing 1-2 of 2 results.