Original entry on oeis.org
11, 23, 101, 10001, 100000001, 95652604391301
Offset: 1
A082780
a(1) = 5, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).
Original entry on oeis.org
5, 55, 5005, 505505, 5005005005, 50055055055005, 50005050055005050005, 5000005005005005005005000005, 50000050055050055055055005055005000005
Offset: 1
A082781
a(1) = 6, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).
Original entry on oeis.org
6, 66, 6006, 606606, 6006006006, 60066066066006, 60006060066006060006, 6000006006006006006006000006, 60000060066060066066066006066006000006
Offset: 1
A082783
a(1) = 8, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).
Original entry on oeis.org
8, 88, 8008, 808808, 8008008008, 80088088088008, 80008080088008080008, 8000008008008008008008000008, 80000080088080088088088008088008000008
Offset: 1
A088780
a(1) = 9, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).
Original entry on oeis.org
9, 99, 9009, 909909, 9009009009, 90099099099009, 90009090099009090009, 9000009009009009009009000009, 90000090099090099099099009099009000009
Offset: 1
A342347
a(1) = 7, a(n) = smallest palindromic nontrivial multiple of a(n-1) containing all decimal digits of a(n-1).
Original entry on oeis.org
7, 77, 1771, 178871, 1788888871, 2188118778118812, 218811879999999978118812, 2188118799999999999999999999999978118812
Offset: 1
a(3) = 1771 is a palindromic multiple of a(2) = 77 and contains two '7', all the digits of a(2).
Showing 1-6 of 6 results.
Comments