A082872 a^n + b^n + c^n + ..., where a*b*c* ... is the prime factorization of n.
1, 4, 27, 32, 3125, 793, 823543, 768, 39366, 9766649, 285311670611, 539633, 302875106592253, 678223089233, 30531927032, 262144, 827240261886336764177, 775103122, 1978419655660313589123979, 95367433737777, 558545874543637210
Offset: 1
Examples
a(6) = a(2*3) = 2^6 + 3^6 = 793. a(8) = a(2*2*2) = 2^8 + 2^8 + 2^8 = 768.
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
Programs
-
Maple
A082872 := proc(n) local ps; if n= 1 then 1; else ps := ifactors(n)[2] ; add( op(2,p)*op(1,p)^n,p=ps) ; end if; end proc: # R. J. Mathar, Mar 12 2014
-
Mathematica
Table[f = FactorInteger[n]; Total[Flatten[Table[Table[f[[i, 1]], {f[[i, 2]]}], {i, Length[f]}]]^n], {n, 25}] (* T. D. Noe, Feb 01 2013 *) Table[Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]^n],{n,30}] (* Harvey P. Dale, Jun 10 2016 *)
Comments