cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082872 a^n + b^n + c^n + ..., where a*b*c* ... is the prime factorization of n.

Original entry on oeis.org

1, 4, 27, 32, 3125, 793, 823543, 768, 39366, 9766649, 285311670611, 539633, 302875106592253, 678223089233, 30531927032, 262144, 827240261886336764177, 775103122, 1978419655660313589123979, 95367433737777, 558545874543637210
Offset: 1

Views

Author

Jason Earls, May 25 2003

Keywords

Comments

n*log_10(2) + log_10(log_2(n)) <= length(a(n)) <= n*log_10(n). - Martin Renner, Jan 18 2012
If m = p^k is a power of a prime then a(n) = sum(p^m,i=1..k) = k*p^m is composite. - Martin Renner, Jan 31 2013

Examples

			a(6) = a(2*3) = 2^6 + 3^6 = 793.
a(8) = a(2*2*2) = 2^8 + 2^8 + 2^8 = 768.
		

Crossrefs

Programs

  • Maple
    A082872 := proc(n)
        local ps;
        if n= 1 then
            1;
        else
            ps := ifactors(n)[2] ;
            add( op(2,p)*op(1,p)^n,p=ps) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2014
  • Mathematica
    Table[f = FactorInteger[n]; Total[Flatten[Table[Table[f[[i, 1]], {f[[i, 2]]}], {i, Length[f]}]]^n], {n, 25}] (* T. D. Noe, Feb 01 2013 *)
    Table[Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]^n],{n,30}] (* Harvey P. Dale, Jun 10 2016 *)