cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083083 A diagonal of number array A083075.

Original entry on oeis.org

1, 7, 97, 1831, 43393, 1242375, 41818561, 1620979687, 71191804801, 3496805826823, 190053352702753, 11329044782441127, 735151931535979777, 51600331868857972231, 3896042468112362132353, 314921475287825567805799
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [((n+2)*(2*n+7)^n+1)/(n+3): n in [0..20]]; // Vincenzo Librandi, Nov 12 2011
  • Mathematica
    Table[((n+2)(2n+7)^n+1)/(n+3),{n,0,20}] (* Harvey P. Dale, Nov 18 2021 *)

Formula

a(n) = ((n+2)*(2n+7)^n + 1)/(n+3).

A192383 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 6, 8, 60, 160, 744, 2496, 10064, 36480, 140512, 522624, 1983168, 7439360, 28091520, 105674752, 398391552, 1500057600, 5652182528, 21288560640, 80200784896, 302101094400, 1138045495296, 4286942363648, 16149041172480, 60833034895360
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d=sqrt(x+3). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1
  p(1, x) =     2*x -> 2*x
  p(2, x) = 3 +   x +  3*x^2 -> 6 + 4*x
  p(3, x) =    12*x +  4*x^2 +  4*x^3 -> 8 + 24*x
  p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 60 + 72*x.
From these, read A192383 = (1, 0, 6, 8, 60, ...) and A192384 = (0, 2, 4, 24, 72, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    Coefficients(R!( x*(1-2*x-2*x^2)/(1-2*x-8*x^2+4*x^3+4*x^4) )) // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    q[x_]:= x+1; d= Sqrt[x+3];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n,6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}];
    Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192383 *)
    Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192384 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192385 *)
    LinearRecurrence[{2,8,-4,-4}, {1,0,6,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192383
        if (n<5): return (0,1,0,6,8)[n]
        else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From Colin Barker, May 11 2014: (Start)
a(n) = 2*a(n-1) + 8*a(n-2) - 4*a(n-3) - 4*a(n-4).
G.f.: x*(1-2*x-2*x^2)/(1-2*x-8*x^2+4*x^3+4*x^4). (End)
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+3))^n - (x-sqrt(x+3))^n)/(2*sqrt(x+3)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k-1). (End)
Showing 1-2 of 2 results.