A083103 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 1786772701928802632268715130455793, 1059683225053915111058165141686995.
1786772701928802632268715130455793, 1059683225053915111058165141686995, 2846455926982717743326880272142788, 3906139152036632854385045413829783, 6752595079019350597711925685972571, 10658734231055983452096971099802354
Offset: 0
References
- P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 178.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..4617
- R. L. Graham, A Fibonacci-Like sequence of composite numbers, Math. Mag. 37 (1964) 322-324
- D. Ismailescu, J. Son, A New Kind of Fibonacci-Like Sequence of Composite Numbers, J. Int. Seq. 17 (2014) # 14.8.2.
- Tanya Khovanova, Recursive Sequences
- D. E. Knuth, A Fibonacci-Like sequence of composite numbers, Math. Mag. 63 (1) (1990) 21-25
- Carlos Rivera, Problem 31. Fibonacci- all composites sequence, The Prime Puzzles and Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Mathematica
LinearRecurrence[{1,1},{1786772701928802632268715130455793, 1059683225053915111058165141686995},70] (* Harvey P. Dale, Oct 17 2011 *)
Formula
G.f.: (1786772701928802632268715130455793-727089476874887521210549988768798*x)/(1-x-x^2). [Colin Barker, Jun 19 2012]
Extensions
Name clarified by Robert C. Lyons, Feb 07 2025
Comments