A083104 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 331635635998274737472200656430763, 1510028911088401971189590305498785.
331635635998274737472200656430763, 1510028911088401971189590305498785, 1841664547086676708661790961929548, 3351693458175078679851381267428333, 5193358005261755388513172229357881, 8545051463436834068364553496786214
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..4618
- Arturas Dubickas, Aivaras Novikas and Jonas Šiurys, A binary linear recurrence sequence of composite numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1737-1749.
- R. L. Graham, A Fibonacci-Like sequence of composite numbers, Math. Mag. 37 (1964) 322-324.
- D. Ismailescu and J. Son, A New Kind of Fibonacci-Like Sequence of Composite Numbers, J. Int. Seq. 17 (2014) # 14.8.2.
- Tanya Khovanova, Recursive Sequences
- D. E. Knuth, A Fibonacci-Like sequence of composite numbers, Math. Mag. 63 (1) (1990) 21-25
- J. W. Nicol, A Fibonacci-like sequence of composite numbers, The Electronic Journal of Combinatorics, Volume 6 (1999), Research Paper #R44.
- Carlos Rivera, Problem 31. Fibonacci- all composites sequence, The Prime Puzzles and Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,1},{331635635998274737472200656430763,1510028911088401971189590305498785},7] (* Harvey P. Dale, Oct 29 2016 *)
-
PARI
a(n)=331635635998274737472200656430763*fibonacci(n-1)+ 1510028911088401971189590305498785*fibonacci(n) \\ Charles R Greathouse IV, Dec 18 2014
Formula
G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1-x-x^2). - Colin Barker, Jun 19 2012
Extensions
Name clarified by Robert C. Lyons, Feb 07 2025
Comments