cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083104 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 331635635998274737472200656430763, 1510028911088401971189590305498785.

Original entry on oeis.org

331635635998274737472200656430763, 1510028911088401971189590305498785, 1841664547086676708661790961929548, 3351693458175078679851381267428333, 5193358005261755388513172229357881, 8545051463436834068364553496786214
Offset: 0

Views

Author

Harry J. Smith, Apr 23 2003

Keywords

Comments

This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Ronald Graham in 1964.

Crossrefs

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083105, A083216, A082411, A221286.

Programs

  • Mathematica
    LinearRecurrence[{1,1},{331635635998274737472200656430763,1510028911088401971189590305498785},7] (* Harvey P. Dale, Oct 29 2016 *)
  • PARI
    a(n)=331635635998274737472200656430763*fibonacci(n-1)+ 1510028911088401971189590305498785*fibonacci(n) \\ Charles R Greathouse IV, Dec 18 2014

Formula

G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1-x-x^2). - Colin Barker, Jun 19 2012

Extensions

Name clarified by Robert C. Lyons, Feb 07 2025