cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083217 a(n) = (2*5^n + (-1)^n)/3.

Original entry on oeis.org

1, 3, 17, 83, 417, 2083, 10417, 52083, 260417, 1302083, 6510417, 32552083, 162760417, 813802083, 4069010417, 20345052083, 101725260417, 508626302083, 2543131510417, 12715657552083, 63578287760417, 317891438802083
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A003683 (without leading zero). Inverse binomial transform of A067411.
a(n) is the number of compositions of n when there are 3 types of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • Magma
    [(2*5^n +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Feb 17 2023
  • Mathematica
    LinearRecurrence[{4,5},{1,3},30] (* Harvey P. Dale, Sep 18 2018 *)
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(1,3,4,5, lambda n: 0)
    [next(it) for i in range(1,24)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = (2*5^n + (-1)^n)/3.
G.f.: (1-x)/((1-5*x)*(1+x)).
E.g.f.: (2*exp(5*x) + exp(-x))/3
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*J(n-j+1) where J(n) = A001045(n). - Paul Barry, May 19 2006
a(0)=1, a(n) = 5*a(n-1) - 2 if n is odd, and a(n) = 5*a(n) + 2 if n is even. - Vincenzo Librandi, Nov 18 2010