cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083220 a(n) = n + (n mod 4).

Original entry on oeis.org

0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 16, 18, 20, 22, 20, 22, 24, 26, 24, 26, 28, 30, 28, 30, 32, 34, 32, 34, 36, 38, 36, 38, 40, 42, 40, 42, 44, 46, 44, 46, 48, 50, 48, 50, 52, 54, 52, 54, 56, 58, 56, 58, 60, 62, 60, 62, 64, 66, 64, 66, 68, 70, 68, 70, 72, 74
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Examples

			G.f. = 2*x + 4*x^2 + 6*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 10*x^7 + 8*x^8 + 10*x^9 + ...
		

Crossrefs

Cf. A010873 (n mod 4), A083219, A187832.

Programs

  • Mathematica
    a[n_] := Mod[n, 4] + n; (* Michael Somos, Feb 23 2017 *)
  • PARI
    concat(0, Vec(-2*x*(x^3-x^2-x-1)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100))) \\ Colin Barker, Oct 13 2014
    
  • PARI
    {a(n) = n%4 + n}; /* Michael Somos, Feb 23 2017 */

Formula

a(n) = 2*A083219(n).
a(n) = a(n-1) + 2*(n mod 2 + (n mod 4 -1)*(1- n mod 2)), a(0)=0.
a(n) = (3 - (-1)^n - (1+i)*(-i)^n - (1-i)*i^n + 2*n)/2 where i=sqrt(-1). - Colin Barker, Oct 13 2014
G.f.: -2*x*(x^3-x^2-x-1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Oct 13 2014
For n > 4, a(n) = a(n-4) + 4. - Zak Seidov, Feb 23 2017
G.f.: 1/(1-x)^2 + 1/(2*(1-x)) - 1/(2*(1+x)) - (1+x)/(1+x^2). - Michael Somos, Feb 23 2017
E.g.f.: (1 + x)*cosh(x) - cos(x) + (2 + x)*sinh(x) - sin(x). - Stefano Spezia, May 28 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) - 1/2 (A187832). - Amiram Eldar, Aug 21 2023