A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2
Examples
The top left corner of the array: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 5, 25, 35, 55, 65, 85, 95, 115, 125, 145, 155, 175, 185 7, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583 13, 169, 221, 247, 299, 377, 403, 481, 533, 559, 611, 689, 767 17, 289, 323, 391, 493, 527, 629, 697, 731, 799, 901, 1003, 1037 19, 361, 437, 551, 589, 703, 779, 817, 893, 1007, 1121, 1159, 1273 23, 529, 667, 713, 851, 943, 989, 1081, 1219, 1357, 1403, 1541, 1633 29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117 ...
Links
Crossrefs
Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Programs
-
Mathematica
lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)
Extensions
More terms from Hugo Pfoertner, Jun 13 2003
Comments