A083233 a(n) = (3*8^n + 0^n)/4.
1, 6, 48, 384, 3072, 24576, 196608, 1572864, 12582912, 100663296, 805306368, 6442450944, 51539607552, 412316860416, 3298534883328, 26388279066624, 211106232532992, 1688849860263936, 13510798882111488, 108086391056891904, 864691128455135232
Offset: 0
Examples
a(0) = (3*8^0 + 0^0)/4 = 4/4 = 1 (using 0^0 = 1).
Links
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (8).
Crossrefs
Programs
-
Mathematica
Join[{1},NestList[8#&,6,20]] (* Harvey P. Dale, Sep 25 2020 *)
-
PARI
a(n)=(3*8^n+0^n)/4 \\ Charles R Greathouse IV, Oct 07 2015
-
Python
def A083233(n): return 3<<3*n-2 if n else 1 # Chai Wah Wu, Nov 27 2023
Formula
a(n) = (3*8^n + 0^n)/4.
G.f.: (1-2x)/(1-8x).
E.g.f.: (3*exp(8x) + exp(0))/4.
a(0) = 1, a(n+1) = 6*8^n. - Arkadiusz Wesolowski, Aug 15 2013
Comments