cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083233 a(n) = (3*8^n + 0^n)/4.

Original entry on oeis.org

1, 6, 48, 384, 3072, 24576, 196608, 1572864, 12582912, 100663296, 805306368, 6442450944, 51539607552, 412316860416, 3298534883328, 26388279066624, 211106232532992, 1688849860263936, 13510798882111488, 108086391056891904, 864691128455135232
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A083232. Inverse binomial transform of A066443.
Numbers k such that, except for some first term, k^2 = [A000302]^3 + [A004171]^3 + [A002001]^3; e.g., 3072^2 = 64^3 + 128^3 + 192^3; 51539607552^2 = 4194304^3 + 8388608^3 + 12582912^3. - Vincenzo Librandi, Aug 08 2010
With the exception of the first term, these numbers cannot be written as the sum of two integer cubes but can be written as the sum of two positive rational cubes (i.e., 6*8^n = (17*2^n/21)^3 + (37*2^n/21)^3). - Arkadiusz Wesolowski, Aug 15 2013
a(n+1) is the number of unit square faces on the convex hull of a level n Menger sponge. This follows since it has six exterior faces, each of which is a Sierpinski carpet with 8^n squares. - Allan Bickle, Nov 28 2022

Examples

			a(0) = (3*8^0 + 0^0)/4 = 4/4 = 1 (using 0^0 = 1).
		

Crossrefs

Cf. A083234. Subsequence of A159843.
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (3*8^n + 0^n)/4.
G.f.: (1-2x)/(1-8x).
E.g.f.: (3*exp(8x) + exp(0))/4.
a(0) = 1, a(n+1) = 6*8^n. - Arkadiusz Wesolowski, Aug 15 2013