cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083296 a(n) = (4*3^n + (-7)^n)/5.

Original entry on oeis.org

1, 1, 17, -47, 545, -3167, 24113, -162959, 1158209, -8054975, 56542289, -395323631, 2768682593, -19376526623, 135648440945, -949500822863, 6646620551297, -46525999485311, 325683029518481, -2279778107265455, 15958456048949921, -111709164448374239
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Comments

Binomial transform of A083295.

References

  • K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press LLC, 2000, p. 182 (example 9).

Crossrefs

Programs

  • Magma
    [(4*3^n+(-7)^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Mathematica
    Table[[(4*3^n+(-7)^n)/5], {n,0,21}] (* Bruno Berselli, Dec 06 2011 *)
    LinearRecurrence[{-4,21},{1,1},30] (* Harvey P. Dale, Dec 13 2015 *)
  • Maxima
    a[0]:1$ a[1]:1$ a[n]:=-4*a[n-1]+21*a[n-2]$ makelist(a[n], n, 0, 21);  /* _Bruno Berselli, Dec 06 2011 */
    
  • PARI
    a(n)=(4*3^n+(-7)^n)/5 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+5*x)/((1-3*x)*(1+7*x)).
E.g.f.: (4*exp(3*x) + exp(-7*x))/5.

A083294 a(n) = (4 + (-9)^n)/5.

Original entry on oeis.org

1, -1, 17, -145, 1313, -11809, 106289, -956593, 8609345, -77484097, 697356881, -6276211921, 56485907297, -508373165665, 4575358490993, -41178226418929, 370604037770369, -3335436339933313, 30018927059399825, -270170343534598417, 2431533091811385761
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Crossrefs

Cf. A083295.

Programs

  • Magma
    [(4+(-9)^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
  • Mathematica
    (4+(-9)^Range[0,20])/5 (* or *) LinearRecurrence[{-8,9},{1,-1},30] (* Harvey P. Dale, Sep 25 2021 *)

Formula

a(n) = (4 + (-9)^n)/5.
G.f.: (1+7*x)/((1-x)*(1+9*x)).
E.g.f.: (4*exp(x) + exp(-9*x))/5.
Showing 1-2 of 2 results.