cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093136 Expansion of (1 - 8*x)/(1 - 10*x).

Original entry on oeis.org

1, 2, 20, 200, 2000, 20000, 200000, 2000000, 20000000, 200000000, 2000000000, 20000000000, 200000000000, 2000000000000, 20000000000000, 200000000000000, 2000000000000000, 20000000000000000, 200000000000000000, 2000000000000000000, 20000000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

A convex combination of 10^n and 0^n.
Inverse binomial transform of A083294. - Stefano Spezia, Jul 07 2021

Crossrefs

Partial sums are A093135.

Programs

  • Mathematica
    CoefficientList[Series[(1-8x)/(1-10x),{x,0,30}],x] (* or *) LinearRecurrence[{10},{1,2},30] (* Harvey P. Dale, Oct 02 2022 *)
  • PARI
    Vec((1-8*x)/(1-10*x) + O(x^20)) \\ Felix Fröhlich, Jul 07 2021

Formula

a(n) = (2*10^n + 8*0^n)/10.
a(n) = 2*10^(n-1), n > 0. - Vincenzo Librandi, Aug 02 2010
E.g.f.: (8 + 2*exp(10*x))/10. - Stefano Spezia, Jul 05 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 14/9.
Sum_{n>=0} (-1)^n/a(n) = 6/11.
Product_{n>=1} (1 - 1/a(n)) = A132026. (End)

A083295 a(n) = (4*2^n + (-8)^n)/5.

Original entry on oeis.org

1, 0, 16, -96, 832, -6528, 52480, -419328, 3355648, -26843136, 214749184, -1717985280, 13743898624, -109951156224, 879609315328, -7036874391552, 56294995394560, -450359962632192, 3602879702106112, -28823037614751744, 230584300922208256
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Comments

Binomial transform of A083294.

Crossrefs

Cf. A083296.

Programs

Formula

a(n) = (4*2^n + (-8)^n)/5.
G.f.: (1+6*x)/((1-2*x)*(1+8*x)).
E.g.f.: (4*exp(2*x) + exp(-8*x))/5.
Showing 1-2 of 2 results.