A083346 Denominator of r(n) = Sum(e/p: n=Product(p^e)).
1, 2, 3, 1, 5, 6, 7, 2, 3, 10, 11, 3, 13, 14, 15, 1, 17, 6, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 3, 37, 38, 39, 10, 41, 42, 43, 11, 15, 46, 47, 3, 7, 10, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 21, 1, 65, 66, 67, 17, 69, 70, 71, 6, 73, 74, 15, 19, 77, 78
Offset: 1
Examples
n=12 = 2*2*3 = 2^2 * 3^1 -> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12)=3, A083345(12)=4; n=18 = 2*3*3 = 2^1 * 3^2 -> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18)=6, A083345(18)=7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *)
-
PARI
A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Mar 01 2018
Formula
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 * Product_{p prime} (p^(2*p)*(p^2+p-1)-p^3)/((p^2+p-1)*(p^(2*p)-1)) = 0.3374565531... . - Amiram Eldar, Nov 18 2022
Extensions
Incorrect formula removed by Antti Karttunen, Jan 09 2023
Comments