cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083346 Denominator of r(n) = Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 3, 10, 11, 3, 13, 14, 15, 1, 17, 6, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 3, 37, 38, 39, 10, 41, 42, 43, 11, 15, 46, 47, 3, 7, 10, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 21, 1, 65, 66, 67, 17, 69, 70, 71, 6, 73, 74, 15, 19, 77, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Multiplicative with a(p^e) = 1 iff p|e, p otherwise. For f(n) = A083345(n)/A083346(n), f(p^i*q^j*...) = f(p^i)+f(q^j)+ ... The denominator of each term is 1 or the prime, thus the denominator of the sum is the product of the denominators of the components. - Christian G. Bower, May 16 2005
n divided by the greatest common divisor of n and its arithmetic derivative, i.e., a(n) = n/gcd(n,n') = A000027(n)/A085731(n). - Giorgio Balzarotti, Apr 14 2011

Examples

			n=12 = 2*2*3 = 2^2 * 3^1 -> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12)=3, A083345(12)=4;
n=18 = 2*3*3 = 2^1 * 3^2 -> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18)=6, A083345(18)=7.
		

Crossrefs

Cf. A083345 (numerator).
Cf. A035263 (parity of terms), A003159 (positions of odd terms), A036554 (of even terms).
Cf. A065463, A072873, A083347, A083348, A359588 (Dirichlet inverse).

Programs

  • Mathematica
    a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *)
  • PARI
    A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Mar 01 2018

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 * Product_{p prime} (p^(2*p)*(p^2+p-1)-p^3)/((p^2+p-1)*(p^(2*p)-1)) = 0.3374565531... . - Amiram Eldar, Nov 18 2022

Extensions

Incorrect formula removed by Antti Karttunen, Jan 09 2023