cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A359588 Dirichlet inverse of A083346.

Original entry on oeis.org

1, -2, -3, 3, -5, 6, -7, -6, 6, 10, -11, -9, -13, 14, 15, 12, -17, -12, -19, -15, 21, 22, -23, 18, 20, 26, -10, -21, -29, -30, -31, -24, 33, 34, 35, 18, -37, 38, 39, 30, -41, -42, -43, -33, -30, 46, -47, -36, 42, -40, 51, -39, -53, 20, 55, 42, 57, 58, -59, 45, -61, 62, -42, 48, 65, -66, -67, -51, 69
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

Multiplicative because A083346 is.

Crossrefs

Cf. A083346, A091428 (positions of odd terms), A359592 (parity of terms).
Cf. also A359577.

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], 1, p]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
    memoA359588 = Map();
    A359588(n) = if(1==n,1,my(v); if(mapisdefined(memoA359588,n,&v), v, v = -sumdiv(n,d,if(dA083346(n/d)*A359588(d),0)); mapput(memoA359588,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083346(n/d) * a(d).

A083345 Numerator of r(n) = Sum(e/p: n=Product(p^e)); a(n) = n' / gcd(n,n'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 4, 1, 9, 8, 2, 1, 7, 1, 6, 10, 13, 1, 11, 2, 15, 1, 8, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 12, 13, 25, 1, 7, 2, 9, 20, 14, 1, 3, 16, 23, 22, 31, 1, 23, 1, 33, 17, 3, 18, 61, 1, 18, 26, 59, 1, 13, 1, 39, 11, 20, 18, 71, 1, 11, 4, 43, 1, 31, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Least common multiple of n and its arithmetic derivative, divided by n, i.e. a(n) = lcm(n,n')/n = A086130(n)/A000027(n). - Giorgio Balzarotti, Apr 14 2011
From Antti Karttunen, Nov 12 2024: (Start)
Positions of multiples of any natural number in this sequence (like A369002, A369644, A369005, or A369007) form always a multiplicative semigroup: if m and n are in that sequence, then so is m*n.
Proof: a(x) = x' / gcd(x,x') = A003415(x) / A085731(x) by definition. Let v_p(x) be the p-adic valuation of x, with p prime. Let e = v_p(c), the p-adic valuation of natural number c whose multiples we are searching for. For v_p(a(x)) >= e > 0 and v_p(a(y)) >= e > 0 to hold we must have v_p(x') = v_p(x)+h and v_p(y') = v_p(y)+k, for some h >= e, k >= e for p^e to divide a(x) and a(y).
Then, as a(xy) = (xy)' / gcd(xy,(xy)') = (x'y + y'x) / gcd(xy, (x'y + y'x)), we have, for the top side, v_p((xy)') = min(v_p(x')+v_p(y), v_p(y')+v_p(x)) = min(v_p(x) + h + v_p(y), v_p(y) + k + v_p(x)) = v_p(xy) + min(h,k), and for the bottom side we get v_p(gcd(xy, (x'y + y'x))) = min(v_p(xy), v_p(xy) + min(h,k)) = v_p(xy), so v_p(a(xy)) = min(h,k) >= e, thus p^e | a(xy). For a composite c that is not a prime power, c | a(xy) holds if the above equations hold for all p^e || c.
(End)

Examples

			Fractions begin with 0, 1/2, 1/3, 1, 1/5, 5/6, 1/7, 3/2, 2/3, 7/10, 1/11, 4/3, ...
For n = 12, 2*2*3 = 2^2 * 3^1 --> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12) = 4, A083346(12) = 3.
For n = 18, 2*3*3 = 2^1 * 3^2 --> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18) = 7, A083346(18) = 6.
		

Crossrefs

Cf. A369001 (anti-parity), A377874 (parity).
Cf. A369002 (positions of even terms), A369003 (of odd terms), A369644 (of multiples of 3), A369005 (of multiples of 4), A373265 (of terms of the form 4m+2), A369007 (of multiples of 27), A369008, A369068 (Möbius transform), A369069.

Programs

  • Mathematica
    Array[Numerator@ Total[FactorInteger[#] /. {p_, e_} /; e > 0 :> e/p] - Boole[# == 1] &, 85] (* Michael De Vlieger, Feb 25 2018 *)
  • PARI
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Feb 25 2018

Formula

The fraction a(n)/A083346(n) is totally additive with a(p) = 1/p. - Franklin T. Adams-Watters, May 17 2006
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A083346(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Sep 29 2023
a(n) = A003415(n) / A085731(n) = A342001(n) / A369008(n). - Antti Karttunen, Jan 16 2024

Extensions

Secondary definition added by Antti Karttunen, Nov 12 2024

A085731 Greatest common divisor of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 64, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

a(n) = 1 iff n is squarefree (A005117), cf. A068328.
This sequence is very probably multiplicative. - Mitch Harris, Apr 19 2005

Crossrefs

Programs

  • Haskell
    a085731 n = gcd n $ a003415 n -- Reinhard Zumkeller, May 10 2011
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := GCD[n, d[n]]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Feb 21 2014 *)
    f[p_, e_] := p^If[Divisible[e, p], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} \\ Michel Marcus, Feb 14 2016

Formula

a(n) = GCD(n, A003415(n)).
Multiplicative with a(p^e) = p^e if p divides e; a(p^e) = p^(e-1) otherwise. - Eric M. Schmidt, Oct 22 2013
From Antti Karttunen, Feb 28 2021: (Start)
Thus a(A276086(n)) = A328572(n), by the above formula and the fact that A276086 is a permutation of A048103.
a(n) = n / A083346(n) = A190116(n) / A086130(n). (End)

A328571 Primorial base expansion of n converted into its prime product form, but with all nonzero digits replaced by 1's: a(n) = A007947(A276086(n)).

Original entry on oeis.org

1, 2, 3, 6, 3, 6, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Cf. A276156 (gives the indices where this coincides with A276086).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    A276086[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    a[n_] := rad[A276086[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen in A276086 *)
  • PARI
    A328571(n) = { my(m=1, p=2); while(n, m *= (p^!!(n%p)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A007947(A276086(n)).
a(n) = A276086(n) / A328572(n).
a(A276156(n)) = A276086(A276156(n)). [And at no other points the equality holds]
A001221(a(n)) = A267263(n).
a(n) = A083346(A276086(n)). - Antti Karttunen, Feb 28 2021

A083347 Numbers k such that Sum(e/p: k=Product(p^e)) < 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Numbers k whose arithmetic derivative (A003415) k' < k. - T. D. Noe, Apr 24 2011

Crossrefs

Programs

  • Haskell
    a083347 n = a083347_list !! (n-1)
    a083347_list = filter ((< 0) . a168036) [1..]
    -- Reinhard Zumkeller, May 22 2015, May 10 2011
  • Mathematica
    Select[Range@ 102, If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger@ Abs@ #]] < # &] (* Michael De Vlieger, Feb 02 2019 *)

Formula

A083345(a(n)) < A083346(a(n));
A168036(a(n)) < 0. - Reinhard Zumkeller, May 22 2015

A083348 Numbers k such that r(k) = Sum(e/p: k = Product(p^e)) > 1.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

The number of terms not exceeding 10^m, for m = 1, 2, ..., are 1, 29, 318, 3174, 31763, 317813, 3177179, 31774009, 317745099, 3177373819, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3177... . - Amiram Eldar, Jun 24 2022

Crossrefs

Cf. A003415, A072873, A051674, A083345, A083346, A083347, A168036, A369048 (characteristic function), A369049.
Subsequence of A100717.

Programs

  • Haskell
    a083348 n = a083348_list !! (n-1)
    a083348_list = filter ((> 0) . a168036) [1..]
    -- Reinhard Zumkeller, May 22 2015, May 10 2011
  • Mathematica
    ad[n_] := Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[ {p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    Select[Range[1000], ad[#] > # &] (* Jean-François Alcover, May 04 2023 *)

Formula

A083345(a(n)) > A083346(a(n)).
A168036(a(n)) > 0. - Reinhard Zumkeller, May 22 2015

A189100 a(n) = lcm(n!,n!')/gcd(n!,n!'), where n!' is the arithmetic derivative of n! (A068311).

Original entry on oeis.org

0, 2, 30, 66, 1830, 645, 33180, 198870, 228270, 64785, 7960260, 9738960, 1663226565, 7232635410, 857066210, 1057466410, 307311194190, 767464487790, 278292627277665, 306517823106495, 35302033071305, 147385363695570, 78207294248313230, 198777858520921680
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Comments

Least common multiple of n! and its arithmetic derivative divided by greatest common divisor of n! and its arithmetic derivative.

Examples

			n = 5: 5! = 120, 120' = 244, gcd(120,244) = 4, lcm(120,244) = 7320, 7320/4 = 1830 -> a(5) = 1830.
		

Crossrefs

Formula

a(n) = lcm(n!,n!')/gcd(n!,n!') = A086130(n!)/A085731(n!) = lcm(A000142(n),A068311(n))/gcd(A000142(n),A068311(n))

A189102 Greatest common divisor of n! and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 4, 48, 48, 192, 1728, 34560, 34560, 414720, 414720, 2903040, 130636800, 2090188800, 2090188800, 25082265600, 25082265600, 501645312000, 31603654656000, 347640201216000, 347640201216000, 5562243219456000, 139056080486400000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, gcd(120,244) = 4 -> a(5) = 4
		

Crossrefs

Formula

a(n) = gcd(n!,n!') = gcd(A000142(n),A068311(n)).

A189036 a(n)= lcm(n,n')/gcd(n,n'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 2, 3, 1, 5, 30, 7, 6, 6, 70, 11, 12, 13, 126, 120, 2, 17, 42, 19, 30, 210, 286, 23, 66, 10, 390, 1, 56, 29, 930, 31, 10, 462, 646, 420, 15, 37, 798, 624, 170, 41, 1722, 43, 132, 195, 1150, 47, 21, 14, 90, 1020, 182, 53, 6, 880, 322, 1254, 1798, 59, 345, 61, 2046, 357, 3, 1170, 4026, 67, 306, 1794, 4130, 71, 78, 73, 2886, 165, 380, 1386, 5538, 79, 55, 12, 3526, 83, 651, 1870, 3870, 2784, 770, 89, 1230, 1820, 552, 3162, 4606, 2280, 102, 97, 154, 825, 35
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 15 2011

Keywords

Comments

Least common multiple of n and its arithmetic derivative divided by greatest common divisor of n and its arithmetic derivative.

Examples

			n = 8, n'= 12,  lcm(8,12)= 24, gcd(8,12)= 4, hence a(8)=24/4 = 6.
		

Crossrefs

Formula

a(n) = lcm(n,n')/gcd(n,n') = A086130(n)/A085731(n).

A189103 Least common multiple of n! and its arithmetic derivative.

Original entry on oeis.org

0, 2, 30, 264, 7320, 30960, 1592640, 38183040, 394450560, 2238969600, 275106585600, 4038941491200, 689773321036800, 20996629900646400, 111964387062528000, 2210304446558208000, 642338416210563072000, 19249748121316737024000, 6980209591900198477824000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, lcm(120,244) = 7320 -> a(5) = 7320
		

Crossrefs

Formula

a(n) = lcm(n!,n!') = lcm(A000142(n),A068311(n)).
Showing 1-10 of 14 results. Next