cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085731 Greatest common divisor of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 64, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

a(n) = 1 iff n is squarefree (A005117), cf. A068328.
This sequence is very probably multiplicative. - Mitch Harris, Apr 19 2005

Crossrefs

Programs

  • Haskell
    a085731 n = gcd n $ a003415 n -- Reinhard Zumkeller, May 10 2011
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := GCD[n, d[n]]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Feb 21 2014 *)
    f[p_, e_] := p^If[Divisible[e, p], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} \\ Michel Marcus, Feb 14 2016

Formula

a(n) = GCD(n, A003415(n)).
Multiplicative with a(p^e) = p^e if p divides e; a(p^e) = p^(e-1) otherwise. - Eric M. Schmidt, Oct 22 2013
From Antti Karttunen, Feb 28 2021: (Start)
Thus a(A276086(n)) = A328572(n), by the above formula and the fact that A276086 is a permutation of A048103.
a(n) = n / A083346(n) = A190116(n) / A086130(n). (End)

A189102 Greatest common divisor of n! and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 4, 48, 48, 192, 1728, 34560, 34560, 414720, 414720, 2903040, 130636800, 2090188800, 2090188800, 25082265600, 25082265600, 501645312000, 31603654656000, 347640201216000, 347640201216000, 5562243219456000, 139056080486400000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, gcd(120,244) = 4 -> a(5) = 4
		

Crossrefs

Formula

a(n) = gcd(n!,n!') = gcd(A000142(n),A068311(n)).

A189103 Least common multiple of n! and its arithmetic derivative.

Original entry on oeis.org

0, 2, 30, 264, 7320, 30960, 1592640, 38183040, 394450560, 2238969600, 275106585600, 4038941491200, 689773321036800, 20996629900646400, 111964387062528000, 2210304446558208000, 642338416210563072000, 19249748121316737024000, 6980209591900198477824000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, lcm(120,244) = 7320 -> a(5) = 7320
		

Crossrefs

Formula

a(n) = lcm(n!,n!') = lcm(A000142(n),A068311(n)).

A188901 Integers in the sequences (arithmetic derivative of k) divided by k.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 3, 2, 5, 4, 3, 1, 6, 5, 4, 2, 7, 3, 6, 5, 3, 8, 4, 2, 7, 6, 4, 9, 5, 3, 8, 4, 7, 5, 1, 10, 6, 4, 9, 5, 3, 8, 6, 2, 11, 7, 5, 10, 6, 4, 2, 9, 7, 3, 5, 12, 8, 6, 2, 11, 7, 5, 3, 10, 8, 4, 6, 4, 13, 9, 7, 3, 12, 8, 6, 4, 11
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Comments

Integers in the sequence (k'/k) = A003415(k)/k. See A072873 for the values of k where k'/k is an integer.

Examples

			1' = 0, 0/1 = 0 -> a(1) = 0;
4' = 4 ,4/4 = 1 -> a(2) = 1;
16' = 32, 32/16 = 2 -> a(3) = 2.
		

Crossrefs

Showing 1-4 of 4 results.