A083363 Diagonal of table A083362.
1, 7, 11, 30, 38, 69, 81, 124, 140, 195, 215, 282, 306, 385, 413, 504, 536, 639, 675, 790, 830, 957, 1001, 1140, 1188, 1339, 1391, 1554, 1610, 1785, 1845, 2032, 2096, 2295, 2363, 2574, 2646, 2869, 2945, 3180, 3260, 3507, 3591, 3850, 3938, 4209, 4301, 4584
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A083362.
Programs
-
Magma
[(4*n+3)*(2*n+1-(-1)^n)/4+0^n : n in [0..50]]; // Wesley Ivan Hurt, Sep 26 2014
-
Maple
A083363:=n->(4*n+3)*(2*n+1-(-1)^n)/4+0^n: seq(A083363(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
-
Mathematica
Join[{1}, Table[(4 n + 3) (2 n + 1 - (-1)^n)/4, {n, 30}]] (* Wesley Ivan Hurt, Sep 26 2014 *) LinearRecurrence[{1,2,-2,-1,1},{1,7,11,30,38,69},50] (* Harvey P. Dale, Oct 04 2023 *)
-
PARI
Vec((x^5-x^4-7*x^3-2*x^2-6*x-1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 26 2014
Formula
a(0) = 1; a(2n-1) = 8n^2 - n (n>0); a(2n) = 8n^2 + 3n (n>0).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - Colin Barker, Sep 26 2014
G.f.: (x^5-x^4-7*x^3-2*x^2-6*x-1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 26 2014
a(n) = (4n+3)*(2n+1-(-1)^n)/4+0^n. - Wesley Ivan Hurt, Sep 26 2014
Comments