Original entry on oeis.org
1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1
-
b:= proc(n, m) option remember;
`if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0)/2:
seq(a(n), n=1..23); # Alois P. Heinz, Feb 14 2025
-
a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8;
Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))
A261781
Number T(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 4, 16, 13, 0, 8, 66, 132, 75, 0, 16, 248, 924, 1232, 541, 0, 32, 892, 5546, 13064, 13060, 4683, 0, 64, 3136, 30720, 114032, 195020, 155928, 47293, 0, 128, 10888, 162396, 893490, 2327960, 3116220, 2075948, 545835
Offset: 0
A(3,2) = 16: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 3;
0, 4, 16, 13;
0, 8, 66, 132, 75;
0, 16, 248, 924, 1232, 541;
0, 32, 892, 5546, 13064, 13060, 4683;
0, 64, 3136, 30720, 114032, 195020, 155928, 47293;
...
Columns k=0..10 give
A000007,
A131577,
A293579,
A293580,
A293581,
A293582,
A293583,
A293584,
A293585,
A293586,
A293587.
-
A:= proc(n, k) option remember; `if`(n=0, 1,
add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n==0, 1,
Sum[A[n-j, k]*Binomial[j+k-1, k-1], {j, 1, n}]];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
A083384
a(n) = n*Sum(((k-1)/2)*k!*Stirling_2(n,k),k=1..n).
Original entry on oeis.org
0, 2, 27, 316, 3825, 49866, 706923, 10899512, 182218005, 3289724710, 63865092159, 1327750936788, 29447495757225, 694257067232834, 17343019158929235, 457695211932767344, 12726295039220109885, 371902424983010438238, 11396594412860395106151, 365458808048854606362380
Offset: 1
-
[n*&+[(k-1)/2*Factorial(k)*StirlingSecond(n, k): k in [0..n]]: n in [1..25]]; // Vincenzo Librandi, Sep 01 2018
-
a[n_] := n Sum[1/2 (k-1) k! StirlingS2[n, k], {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, Sep 01 2018 *)
Rest[Range[0, 19]! CoefficientList[Series[x (Exp[x] - 1) Exp[x] / (2 - Exp[x])^3, {x, 0, 19}], x]] (* Vincenzo Librandi, Sep 01 2018 *)
Showing 1-3 of 3 results.
Comments