cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083410 a(n) = A083385(n)/n.

Original entry on oeis.org

1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2003

Keywords

Comments

From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A052849(n+1)=[4,12,48,240,...] is 4*a(n)=[4,16,88,616,...].
Stirling transform of A001710(n+1)=[1,3,12,160,...] is a(n)=[1,4,22,154,...].
Stirling transform of A001563(n+1)=[4,18,96,600,...] is a(n+1)=[4,22,154,...]. (End)

Crossrefs

A005649(n)=2*a(n), if n>0.
Pairwise sums of A091346.
Cf. A090665.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0)/2:
    seq(a(n), n=1..23);  # Alois P. Heinz, Feb 14 2025
  • Mathematica
    a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8;
    Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))

Formula

E.g.f.: (1/(2-exp(x))^2-1)/2. - Michael Somos, Mar 04 2004
G.f.: 1/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=1..n} k * A090665(n,k). - Alois P. Heinz, Feb 20 2025

A261781 Number T(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 16, 13, 0, 8, 66, 132, 75, 0, 16, 248, 924, 1232, 541, 0, 32, 892, 5546, 13064, 13060, 4683, 0, 64, 3136, 30720, 114032, 195020, 155928, 47293, 0, 128, 10888, 162396, 893490, 2327960, 3116220, 2075948, 545835
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2015

Keywords

Comments

From Vaclav Kotesovec, Oct 14 2017: (Start)
Conjecture: For k > 0 the recurrence order for column k is equal to k*(k+1)/2.
Column k > 0 is asymptotic to c(k) * d(k)^n, where c(k) and d(k) are constants (dependent only on k).
k c(k) d(k)
1 A131577(n) ~ 0.50000000000000000000000000 * 2.00000000000000000000000000^n.
2 A293579(n) ~ 0.60355339059327376220042218 * 3.41421356237309504880168872^n.
3 A293580(n) ~ 0.64122035031051210658648604 * 4.84732210186307263951891624^n.
4 A293581(n) ~ 0.66065168848540565019767995 * 6.28521350788324520158143964^n.
5 A293582(n) ~ 0.67250239588725756267924287 * 7.72502395887257562679242875^n.
6 A293583(n) ~ 0.68048292906885160660288253 * 9.16579514882621927923459043^n.
7 A293584(n) ~ 0.68622254929933439577377124 * 10.6071156901906815408327973^n.
8 A293585(n) ~ 0.69054873168854973836384871 * 12.0487797070167958138215794^n.
9 A293586(n) ~ 0.69392626461456654033893782 * 13.4906727630621977261008808^n.
10 A293587(n) ~ 0.69663630864564830007443110 * 14.9327261729129660014886221^n.
---
Conjecture: d(k+1) - d(k) tends to 1/log(2).
d(2) - d(1) = 1.414213562373095048801688724209698...
d(3) - d(2) = 1.433108539489977590717227522340838...
d(4) - d(3) = 1.437891406020172562062523400686067...
d(5) - d(4) = 1.439810450989330425210989107036901...
d(6) - d(5) = 1.440771189953643652442161677346934...
d(7) - d(6) = 1.441320541364462261598206961226199...
d(8) - d(7) = 1.441664016826114272988782079622148...
d(9) - d(8) = 1.441893056045401912279301345910755...
d(10)- d(9) = 1.442053409850768275387741352145193...
1 / log(2) = 1.442695040888963407359924681001892...
(End)

Examples

			A(3,2) = 16: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    3;
  0,  4,   16,    13;
  0,  8,   66,   132,     75;
  0, 16,  248,   924,   1232,    541;
  0, 32,  892,  5546,  13064,  13060,   4683;
  0, 64, 3136, 30720, 114032, 195020, 155928, 47293;
  ...
		

Crossrefs

Row sums give A120733.
Main diagonal gives A000670.
T(2n,n) gives A261784.
T(n+1,n)/2 gives A083385.
Cf. A261719 (same for partitions), A261780.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1,
        Sum[A[n-j, k]*Binomial[j+k-1, k-1], {j, 1, n}]];
    T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261780(n,k-i).

A083384 a(n) = n*Sum(((k-1)/2)*k!*Stirling_2(n,k),k=1..n).

Original entry on oeis.org

0, 2, 27, 316, 3825, 49866, 706923, 10899512, 182218005, 3289724710, 63865092159, 1327750936788, 29447495757225, 694257067232834, 17343019158929235, 457695211932767344, 12726295039220109885, 371902424983010438238, 11396594412860395106151, 365458808048854606362380
Offset: 1

Views

Author

N. J. A. Sloane, Jun 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [n*&+[(k-1)/2*Factorial(k)*StirlingSecond(n, k): k in [0..n]]: n in [1..25]]; //  Vincenzo Librandi, Sep 01 2018
  • Mathematica
    a[n_] := n Sum[1/2 (k-1) k! StirlingS2[n, k], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Sep 01 2018 *)
    Rest[Range[0, 19]! CoefficientList[Series[x (Exp[x] - 1) Exp[x] / (2 - Exp[x])^3, {x, 0, 19}], x]] (* Vincenzo Librandi, Sep 01 2018 *)

Formula

Equals A083385(n) - n*A000670(n).
E.g.f.: x*(exp(x)-1)*exp(x)/(2-exp(x))^3. - Vladeta Jovovic, Sep 14 2003
a(n) ~ n! * n^2 / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Feb 18 2017
Showing 1-3 of 3 results.