A083542 a(n) = phi(n+1)*phi(n), product of totients of two consecutive integers.
1, 2, 4, 8, 8, 12, 24, 24, 24, 40, 40, 48, 72, 48, 64, 128, 96, 108, 144, 96, 120, 220, 176, 160, 240, 216, 216, 336, 224, 240, 480, 320, 320, 384, 288, 432, 648, 432, 384, 640, 480, 504, 840, 480, 528, 1012, 736, 672, 840, 640, 768, 1248, 936, 720, 960, 864, 1008
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a083542 n = a000010 n * a000010 (n + 1) a083542_list = zipWith (*) (tail a000010_list) a000010_list -- Reinhard Zumkeller, Apr 22 2012
-
Maple
a:= n-> (p-> p(n)*p(n+1))(numtheory[phi]): seq(a(n), n=1..60); # Alois P. Heinz, Jan 21 2022
-
Mathematica
Times @@ EulerPhi@ # & /@ Partition[Range@ 58, 2, 1] (* Michael De Vlieger, Mar 25 2017 *) Times@@@Partition[EulerPhi[Range[60]],2,1] (* Harvey P. Dale, Oct 29 2019 *)
-
PARI
a(n) = eulerphi(n) * eulerphi(n+1); \\ Amiram Eldar, Jul 10 2024
Formula
Sum_{k=1..n} a(k) = c * n^3 / 3 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024