cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083564 a(n) = L(n)*L(2n), where L(n) are the Lucas numbers (A000204).

Original entry on oeis.org

3, 21, 72, 329, 1353, 5796, 24447, 103729, 439128, 1860621, 7880997, 33385604, 141421803, 599075421, 2537719272, 10749959329, 45537545553, 192900159396, 817138154247, 3461452823129, 14662949371128, 62113250430021
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2003

Keywords

Comments

a(n+1)/a(n) -> (phi)^3 = ((1 + sqrt(5))/2)^3 = 4.236067...

Examples

			a(4) = Lucas(4)*Lucas(8) = 7*47 = 329.
		

Crossrefs

Third row of array A028412.

Programs

Formula

From Benoit Cloitre, Aug 30 2003: (Start)
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4);
a(n) = Fibonacci(4*n)/Fibonacci(n) = A000045(4*n)/A000045(n). (End)
a(n) = Lucas(3*n) + (-1)^n*Lucas(n).
From R. J. Mathar, Oct 27 2008: (Start)
G.f.: x*(3+12*x-9*x^2-4*x^3)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = A061084(n+1) + 2*A001077(n). (End)
a(n) = (1+phi)^n + (-phi)^n + (2*phi+1)^n + (3-2*phi)^n, phi = (1+sqrt(5))/2. - Gary Detlefs, Dec 09 2012