cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083669 Number of ordered quintuples (a,b,c,d,e), -n <= a,b,c,d,e <= n, such that a+b+c+d+e = 0.

Original entry on oeis.org

1, 51, 381, 1451, 3951, 8801, 17151, 30381, 50101, 78151, 116601, 167751, 234131, 318501, 423851, 553401, 710601, 899131, 1122901, 1386051, 1692951, 2048201, 2456631, 2923301, 3453501, 4052751, 4726801, 5481631, 6323451, 7258701
Offset: 0

Views

Author

Benoit Cloitre, Jun 14 2003

Keywords

Crossrefs

Row 5 of A201552.

Programs

  • Magma
    [1+5*n*(n+1)*(23*n^2+23*n+14)/12: n in [0..30]]; // Vincenzo Librandi, Dec 15 2018
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 51, 381, 1451, 3951}, 30] (* Vincenzo Librandi, Dec 15 2018 *)
  • PARI
    a(n)=115/12*n^4+115/6*n^3+185/12*n^2+35/6*n+1
    
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^5, 5*n, x)} \\ Seiichi Manyama, Dec 14 2018
    

Formula

a(n) = 1 + 5*n*(n+1)*(23*n^2 + 23*n + 14)/12.
a(n) = (1/Pi)*Integral_{x=0..Pi} (sin((n+1/2)*x)/sin(x/2))^5. - Yalcin Aktar, Dec 03 2011
G.f.: ( -1 - 46*x - 136*x^2 - 46*x^3 - x^4 ) / (x-1)^5. - R. J. Mathar, Dec 17 2011
a(n) = [x^(5*n)] (Sum_{k=0..2*n} x^k)^5. - Seiichi Manyama, Dec 14 2018