cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083679 Decimal expansion of log(4/3).

Original entry on oeis.org

2, 8, 7, 6, 8, 2, 0, 7, 2, 4, 5, 1, 7, 8, 0, 9, 2, 7, 4, 3, 9, 2, 1, 9, 0, 0, 5, 9, 9, 3, 8, 2, 7, 4, 3, 1, 5, 0, 3, 5, 0, 9, 7, 1, 0, 8, 9, 7, 7, 6, 1, 0, 5, 6, 5, 0, 6, 6, 6, 5, 6, 8, 5, 3, 4, 9, 2, 9, 2, 9, 5, 0, 7, 2, 0, 7, 8, 0, 4, 6, 4, 3, 3, 8, 1, 1, 0, 8, 9, 9, 1, 7, 9, 1, 0, 5, 2, 8, 6, 2, 9, 6, 0, 3
Offset: 0

Views

Author

Benoit Cloitre, Jun 15 2003

Keywords

Examples

			log(4/3) = 0.2876820724517809274392190059938274315035097108977610565....
		

Crossrefs

Programs

Formula

Limit of a special sum: log(4/3) = Sum_{k>=1} (Sum_{i=1..k} 1/(i*2^i))/2^(k+1).
Asymptotically: log(4/3) = Sum_{k=1..n} (Sum_{i=1..k} 1/(i*2^i))/2^(k+1) + log(2)/2^(n+1) + o(1/2^n).
From Amiram Eldar, Aug 07 2020: (Start)
Equals 2 * arctanh(1/7).
Equals Sum_{n>=1} 1/(n * 4^n) = Sum_{n>=1} 1/A018215(n).
Equals Sum_{n>=1} (-1)^(n+1)/(n * 3^n) = Sum_{n>=1} (-1)^(n+1)/A036290(n).
Equals Integral_{x=0..oo} 1/(3*exp(x) + 1) dx. (End)
log(4/3) = 2*Sum_{n >= 1} 1/(n*P(n, 7)*P(n-1, 7)), where P(n, x) denotes the n-th Legendre polynomial. The first 10 terms of the series gives the approximation log(4/3) = 0.28768207245178092743921(31...), correct to 23 decimal places. - Peter Bala, Mar 18 2024
Equals Sum_{n >= 1} (-1)^(n+1) * 7/(n*binomial(2*n, n)*12^n). The n-th term of the series is O(7*sqrt(Pi/n)*1/48^n). - Peter Bala, Mar 04 2025
Equals Integral_{x=0..1} (x^(1/3) - 1)/log(x) dx. - Kritsada Moomuang, May 27 2025