cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A036290 a(n) = n*3^n.

Original entry on oeis.org

0, 3, 18, 81, 324, 1215, 4374, 15309, 52488, 177147, 590490, 1948617, 6377292, 20726199, 66961566, 215233605, 688747536, 2195382771, 6973568802, 22082967873, 69735688020, 219667417263, 690383311398, 2165293113021, 6778308875544, 21182215236075, 66088511536554, 205891132094649
Offset: 0

Views

Author

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 3n-set X into 3-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

Cf. A000244, A006234, A016578, A027471, A083679, A289399 (partial sums).

Programs

Formula

From Paul Barry, Feb 06 2004: (Start)
A trinomial transform. Differentiate (1+x+x^2)^n and set x=1.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (2*n-2*i-j)*n!/(i!*j!*(n-i-j)!). (End)
From Paul Barry, Feb 15 2005: (Start)
a(n) = Sum_{k=0..2*n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k). (End)
From R. J. Mathar, Jun 19 2011: (Start)
G.f.: 3*x/(3*x-1)^2.
a(n) = 3*A027471(n+1). (End)
Sum_{n>=1} 1/a(n) = log(3/2) = 0.405465108... = A016578. - Franz Vrabec, Jan 07 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(4/3) = A083679. - Amiram Eldar, Jul 20 2020
a(n) = 6*a(n-1) - 9*a(n-2). - Wesley Ivan Hurt, Apr 26 2021
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 3*x*exp(3*x).
a(n) = n*A000244(n). (End)

A018215 a(n) = n*4^n.

Original entry on oeis.org

0, 4, 32, 192, 1024, 5120, 24576, 114688, 524288, 2359296, 10485760, 46137344, 201326592, 872415232, 3758096384, 16106127360, 68719476736, 292057776128, 1236950581248, 5222680231936, 21990232555520, 92358976733184, 387028092977152, 1618481116086272
Offset: 0

Views

Author

N. J. A. Sloane, Peter Winkler (pw(AT)bell-labs.com)

Keywords

Comments

Bisection of A001787. That is, a(n) = A001787(2*n). - Graeme McRae, Jul 12 2006
All numbers of the form n*4^n+(4^n-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity n*4^n+(4^n-1)/3 = 4*(4*(..(4*(4*n+1)+1)..)+1)+1. - Artur Jasinski, Nov 12 2007

Crossrefs

Row n=4 of A258997.

Programs

Formula

G.f.: 4*x/(1-4*x)^2.
E.g.f.: 4*x*exp(4*x).
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(4/3) = A083679.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5/4). (End)

A016578 Decimal expansion of log(3/2).

Original entry on oeis.org

4, 0, 5, 4, 6, 5, 1, 0, 8, 1, 0, 8, 1, 6, 4, 3, 8, 1, 9, 7, 8, 0, 1, 3, 1, 1, 5, 4, 6, 4, 3, 4, 9, 1, 3, 6, 5, 7, 1, 9, 9, 0, 4, 2, 3, 4, 6, 2, 4, 9, 4, 1, 9, 7, 6, 1, 4, 0, 1, 4, 3, 2, 4, 1, 4, 4, 1, 0, 0, 6, 7, 1, 2, 4, 8, 9, 1, 4, 2, 5, 1, 2, 6, 7, 7, 5, 2, 4, 2, 7, 8, 1, 7, 3, 1, 3, 4, 0
Offset: 0

Views

Author

Keywords

Examples

			0.4054651081081643819780131154643491365719904234624941976140143...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961), eq (102), page 20.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3/2],10,111][[1]] (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    default(realprecision, 20080); x=10*log(3/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b016578.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009

Formula

Equals Sum {k>=1} 1/(k*3^k). - Robert G. Wilson v, Aug 08 2011
Equals 1/2 - 1/(2*2^2) + 1/(3*2^3) - 1/(4*2^4) + ... [Jolley].
Equals A002391-A002162. - Michel Marcus, Sep 17 2016
From Amiram Eldar, Aug 07 2020: (Start)
Equals 2 * arctanh(1/5).
Equals Integral_{x=0..oo} 1/(2*exp(x) + 1) dx. (End)
log(3/2) = 2*Sum_{n >= 1} 1/(n*P(n, 5)*P(n-1, 5)), where P(n, x) denotes the n-th Legendre polynomial. The first 10 terms of the series gives the approximation log(3/2) = 0.40546510810816438197(04...), correct to 20 decimal places. - Peter Bala, Mar 16 2024
Equals Sum_{n >= 1} (-1)^(n+1) * 5/(n*binomial(2*n, n)*6^n). The n-th term of the series is O(5*sqrt(Pi/n)*1/24^n). - Peter Bala, Mar 04 2025
Equals Integral_{x=0..1} (sqrt(x) - 1)/log(x) dx. - Kritsada Moomuang, Jun 14 2025

A248565 Least k such that log(4/3) - sum{1/(h*4^h), h = 1..k} < 1/8^n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{1/(h*4^h), h = 1..k} to log(4/3). Since a(n+1) - a(n) is in {1,2} for n >= 1, the sequences A248566 and A248567 partition the positive integers.

Examples

			Let s(n) = log(4/3) - sum{1/(h*4^h), h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/8^n
1 ... 0.037682 ... 0.125
2 ... 0.006432 ... 0.015625
3 ... 0.001223 ... 0.001953
4 ... 0.000247 ... 0.000244
5 ... 0.000051 ... 0.000030
a(4) = 5 because s(5) < 1/8^4 < s(4).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15.

Crossrefs

Cf. A083679 (log(4/3)), A248566, A248567, A248559, A248565.

Programs

  • Mathematica
    z = 2500; p[k_] := p[k] = Sum[1/(h*4^h), {h, 1, k}];
    N[Table[p[k], {k, 1, z/5}], 12];
    N[Table[Log[4/3] - p[n], {n, 1, z/5}]];
    f[n_] := f[n] = Select[Range[z], Log[4/3] - p[#] < 1/8^n &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]] ; (* A248565 *)
    Flatten[Position[Differences[u], 1]]; (* A248566 *)
    Flatten[Position[Differences[u], 2]]; (* A248567 *)

A069864 Decimal expansion of 2/log(4/3).

Original entry on oeis.org

6, 9, 5, 2, 1, 1, 8, 9, 9, 3, 5, 6, 4, 4, 1, 3, 8, 2, 0, 7, 5, 2, 9, 9, 8, 8, 0, 3, 2, 9, 1, 5, 3, 2, 7, 3, 7, 4, 9, 6, 3, 9, 1, 0, 1, 0, 3, 4, 7, 1, 3, 1, 4, 9, 6, 7, 8, 5, 5, 8, 0, 2, 5, 0, 0, 5, 2, 0, 1, 3, 9, 8, 9, 0, 0, 5, 4, 1, 5, 8, 5, 7, 7, 6, 8, 9, 1, 7, 2, 5, 2, 4, 2, 1, 9, 8, 5, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2002

Keywords

Comments

Constant arising in analysis of Kolakoski sequence A000002.

Examples

			6.95211899356441...
		

Crossrefs

Cf. A000002, A083679 (log(4/3)).

Programs

Extensions

a(99) corrected by Georg Fischer, Apr 03 2020

A369522 Decimal expansion of log(4/3) / log(3/2).

Original entry on oeis.org

7, 0, 9, 5, 1, 1, 2, 9, 1, 3, 5, 1, 4, 5, 4, 7, 7, 6, 9, 7, 6, 1, 9, 0, 2, 6, 2, 1, 7, 4, 0, 1, 4, 1, 4, 0, 6, 1, 5, 0, 0, 3, 7, 3, 5, 2, 3, 6, 1, 0, 7, 2, 2, 3, 0, 7, 4, 4, 5, 3, 9, 0, 6, 2, 8, 7, 7, 1, 8, 5, 7, 7, 8, 9, 9, 5, 5, 4, 4, 2, 6, 6, 3, 4, 0, 2
Offset: 0

Views

Author

Ruud H.G. van Tol, Jan 25 2024

Keywords

Examples

			0.70951129135145477697619...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},First[RealDigits[Log[4/3]/Log[3/2],10,86]]] (* James C. McMahon, Jan 30 2024 *)
  • PARI
    (log(4)-log(3)) / (log(3)-log(2))

Formula

Equals A083679 / A016578.
Showing 1-6 of 6 results.