A083752 Minimal k > n such that (4k+3n)(4n+3k) is a square.
393, 786, 1179, 109, 1965, 2358, 2751, 218, 3537, 3930, 4323, 327, 132, 5502, 5895, 436, 6681, 7074, 7467, 545, 8253, 8646, 9039, 157, 9825, 264, 10611, 763, 11397, 11790, 12183, 872, 481, 13362, 13755, 981, 184, 14934, 396, 1090, 16113, 16506, 16899, 1199
Offset: 1
Keywords
Examples
a(24)=157 because (4*157+3*24)(3*157+4*24)= 396900=630*630.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Zak Seidov, Two "triangles" in a right triangle [Cached copy, pdf file, with permission]
Programs
-
Haskell
a083752 n = head [k | k <- [n+1..], a010052 (12*(k+n)^2 + k*n) == 1] -- Reinhard Zumkeller, Apr 06 2015
-
Maple
a:= proc(n) local k; for k from n+1 while not issqr((4*k+3*n)*(4*n+3*k)) do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 13 2013
-
Mathematica
a[n_] := For[k = n + 1, True, k++, If[IntegerQ[Sqrt[(4k+3n)(4n+3k)]], Return[k]]]; Table[an = a[n]; Print[an]; an, {n, 1, 50}] (* Jean-François Alcover, Oct 31 2016 *)
-
PARI
a(n)=my(k=n+1); while(!issquare((4*k+3*n)*(4*n+3*k)), k++); k \\ Charles R Greathouse IV, Dec 13 2013
-
PARI
diff(v)=vector(#v-1,i,v[i+1]-v[i]) a(n)=my(v=select(k->issquare(12*Mod(k,n)^2),[0..n-1])); forstep(k=n+v[1], 393*n, diff(concat(v,n)), if(issquare((4*k+3*n)*(4*n+3*k)) && k>n, return(k))) \\ Charles R Greathouse IV, Dec 13 2013
-
PARI
a(n)=for(k=n+1, 109*n\4, if(issquare((4*k+3*n)*(4*n+3*k)), return(k))); 393*n \\ Charles R Greathouse IV, Jan 09 2014
-
Sage
def a(n): k = n + 1 while not is_square((4*k+3*n)*(4*n+3*k)): k += 1 return k [a(n) for n in (1..44)] # Peter Luschny, Jun 25 2014
Formula
(4a(n)+3n)(4n+3a(n)) is a square.
n < a(n) <= 393n. - Charles R Greathouse IV, Dec 13 2013
Extensions
a(12) corrected by Charles R Greathouse IV, Dec 13 2013
Comments