A083831 Palindromes n such that 4n + 1 is also a palindrome.
1, 2, 8, 88, 131, 141, 232, 242, 888, 8888, 13031, 13131, 13231, 14041, 14141, 14241, 23032, 23132, 23232, 24042, 24142, 24242, 88888, 888888, 1303031, 1304031, 1313131, 1314131, 1323231, 1324231, 1403041, 1404041, 1413141, 1414141
Offset: 1
Examples
13231 and 52925 are palindromes and 4*13231+1=52925, therefore 13231 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
N:= 100: # to get the first N terms fe:= proc(x,d) local L; L:= convert(x,base,10); add(L[j]*(10^(d-j)+10^(d+j-1)),j=1..d) end proc: fo:= proc(x,d) local L; L:= convert(x,base,10); add(L[j]*(10^(d-j)+10^(d+j-2)),j=2..d) + L[1]*10^(d-1); end proc: ispali:= proc(n) local L; L:= convert(n,base,10); L = ListTools:-Reverse(L) end proc: count:= 0: Res:= NULL: for d from 1 while count < N do for x from 10^(d-1) to 10^d-1 while count < N do y:= fo(x,d); if ispali(4*y+1) then count:= count+1; Res:= Res, y; fi od: for x from 10^(d-1) to 10^d-1 while count < N do y:= fe(x,d); if ispali(4*y+1) then count:= count+1; Res:= Res, y; fi od: od: Res; # Robert Israel, Apr 04 2018
-
Mathematica
Select[Range[15*10^5],AllTrue[{#,4#+1},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 08 2018 *)
-
PARI
isok(n) = my(dn = digits(n), dm = digits(4*n+1)); (Vecrev(dn) == dn) && (Vecrev(dm) == dm); \\ Michel Marcus, Apr 04 2018
Extensions
Corrected and extended by Reinhard Zumkeller and Ray Chandler, May 18 2003
Comments