A083906 Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.
1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0
Examples
When viewed as an array with A033638(r) entries per row, the table begins: . 1 ............... : 1 . 2 ............... : 2 . 3 1 ............. : 3 + q = (1) + (1+q) + (1) . 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1 . 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4 . 6 4 6 6 6 2 2 . 7 5 8 9 11 9 7 4 3 1 . 8 6 10 12 16 16 18 12 12 8 6 2 2 . 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1 ... The second but last row is from the sum over 7 q-polynomials coefficients: . 1 ....... : 1 = [6,0]_q . 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q . 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q . 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q . 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q . 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q . 1 ....... : 1 = [6,6]_q
References
- George E. Andrews, 'Theory of Partitions', 1976, page 242.
Links
- Seiichi Manyama, Rows n = 0..48, flattened
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012
- MathOverflow, Partition numbers and Gaussian binomial coefficient
- Eric Weisstein, q-Binomial Coefficient, Mathworld.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 100); qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >; A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >; [A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024 -
Maple
QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end: A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end: for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009 T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi; if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end: seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
-
Mathematica
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
-
PARI
{T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
-
SageMath
def T(n,k): # T = A083906 if k<0 or k> (n^2//4): return 0 elif n<2 : return n+1 else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1) flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
Formula
T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Extensions
Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024
Comments