cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083944 A generalized Jacobsthal sequence.

Original entry on oeis.org

0, 1, -2, -3, -10, -19, -42, -83, -170, -339, -682, -1363, -2730, -5459, -10922, -21843, -43690, -87379, -174762, -349523, -699050, -1398099, -2796202, -5592403, -11184810, -22369619, -44739242, -89478483, -178956970, -357913939, -715827882, -1431655763
Offset: 0

Views

Author

Paul Barry, May 09 2003

Keywords

Crossrefs

Cf. A083943.

Programs

  • Magma
    [3/2-2^(n+1)/3-5*(-1)^n/6: n in [0..40]]; // Vincenzo Librandi, Apr 04 2012
    
  • Mathematica
    CoefficientList[Series[x (1-4x)/((1+x)(1-x)(1-2x)),{x,0,40}],x] (* Vincenzo Librandi, Apr 04 2012 *)
    LinearRecurrence[{2,1,-2},{0,1,-2},40] (* Harvey P. Dale, Jun 08 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(1-4*x)/((1+x)*(1-x)*(1-2*x)))) \\ G. C. Greubel, Oct 10 2017

Formula

G.f.: x*(1-4*x)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: (9*exp(x) - 4*exp(2*x) - 5*exp(-x))/6.
a(n) = (9 - 2^(n+2) - 5*(-1)^n)/6.
a(n) = a(n-1) + 2*a(n-2) - 3 with n > 1, a(0)=0, a(1)=1.
a(2*n) = -A000975(2*n); a(2*n+1) = 2 - A000975(2*n+1).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), with a(0)=0, a(1)=1, a(2)=-2. - Harvey P. Dale, Jun 08 2014

A159290 A generalized Jacobsthal sequence.

Original entry on oeis.org

3, 5, 13, 25, 53, 105, 213, 425, 853, 1705, 3413, 6825, 13653, 27305, 54613, 109225, 218453, 436905, 873813, 1747625, 3495253, 6990505, 13981013, 27962025, 55924053, 111848105, 223696213, 447392425, 894784853, 1789569705, 3579139413
Offset: 0

Views

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

Sequence generated by the floretion: X*Y with X = 0.5('i + 'j + 'k + 'ee') and Y = 0.5(i' + j' + k' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + 'ee')

Crossrefs

Programs

  • Magma
    [-1 + (2*(-1)^n + 5*2^(n+1))/3: n in [0..50]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    LinearRecurrence[{2, 1, -2}, {3, 5, 13}, 50] (* or *) Table[-1 + (2*(-1)^n + 5*2^(n+1))/3, {n,0,30}] (* G. C. Greubel, Jun 27 2018 *)
  • PARI
    x='x+O('x^50); Vec((3-x)/(-x^2+1-2*x+2*x^3)) \\ G. C. Greubel, Jun 27 2018
    

Formula

a(n) = -1 + (2*(-1)^n + 5*2^(n+1))/3.
G.f.: (3-x)/((1-x)*(1+x)*(1-2*x)).
a(n) = 3*A000975(n+1) - A000975(n). - R. J. Mathar, Sep 11 2019
a(n)+a(n+1) = A051633(n+1). - R. J. Mathar, Mar 23 2023
Showing 1-2 of 2 results.