cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084005 a(n) = sqrt(A084004(n)).

Original entry on oeis.org

8, 89, 98, 406, 593, 998, 4445, 4544, 5455, 5554, 9899, 9998, 34687, 44443, 55556, 65312, 90242, 99998, 340066, 362636, 363637, 374219, 416989, 583010, 625780, 636362, 637363, 659933, 702703, 703702, 713285, 714286, 780625, 922076, 923077
Offset: 1

Views

Author

Amarnath Murthy, May 23 2003

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed by Andrew Howroyd, Sep 22 2024

A084006 Squares arising as a concatenation of k and 9's complement of k.

Original entry on oeis.org

36, 81, 1089, 4356, 9801, 110889, 443556, 998001, 11108889, 44435556, 99980001, 1111088889, 4444355556, 9999800001, 111110888889, 444443555556, 999998000001, 11111108888889, 44444435555556, 99999980000001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 23 2003

Keywords

Comments

From Robert Israel, Sep 09 2020: (Start)
Numbers of the form j^2*x*(10^k-1) where x = A007913(10^k-1) and 10^(k-1)+1 <= j^2*x <= 10^k-1.
If k >= 2 is not in A046412, there are only three terms with 2*k digits, namely (10^k-1)^2/9, 4*(10^k-1)^2/9, and 9*(10^k-1)^2/9.
The first term not of one of those three forms is a(25)=197530863802469136.
(End)

Examples

			1089 = 33^2 is a concatenation of 10 and 89, 10+89 = 99.
		

Crossrefs

Programs

  • Maple
    f:= proc(k) local F,x,p,t;
      p:= 10^k-1;
      F:= select(t -> t[2]::odd, ifactors(p)[2]);
      x:= mul(t[1],t=F);
      seq(j^2*x*p, j=ceil(sqrt((10^(k-1)+1)/x))..floor(sqrt(p/x)))
    end proc:
    map(f, [$1..20]); # Robert Israel, Sep 09 2020
  • Python
    from itertools import count, islice
    from math import prod, isqrt
    from sympy import factorint
    def A084006_gen(): # generator of terms
        for l in count(1):
            m = 10**l-1
            x = prod(p for p, e in factorint(m).items() if e&1)
            yield from (j**2*x*m for j in range(isqrt(10**(l-1)//x)+1,isqrt(m//x)+1))
    A084006_list = list(islice(A084006_gen(),20)) # Chai Wah Wu, Mar 20 2025

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed by Robert Israel, Sep 09 2020

A084007 a(n) = A084006(n)^(1/2).

Original entry on oeis.org

6, 9, 33, 66, 99, 333, 666, 999, 3333, 6666, 9999, 33333, 66666, 99999, 333333, 666666, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 333333333, 444444444, 555555555, 666666666, 777777777, 888888888, 999999999
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 23 2003

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from math import prod, isqrt
    from sympy import factorint
    def A084007_gen(): # generator of terms
        for l in count(1):
            m = 10**l-1
            x = prod(p for p, e in factorint(m).items() if e&1)
            y = isqrt(x*m)
            yield from (j*y for j in range(isqrt(10**(l-1)//x)+1,isqrt(m//x)+1))
    A084007_list = list(islice(A084007_gen(),30)) # Chai Wah Wu, Mar 20 2025

Formula

Pattern exhibited by early terms does not continue without interruption. First disruption occurs at a(25)=444444444. Terms with k-digits exhibit the earlier pattern where (10^k-1)/9 is squarefree and k=9 is the first occurrence where (10^k-1)/9 is not squarefree. Others occur at k=18, 22, 27, 36, 42, 44, 45. - Ray Chandler, Aug 04 2003

Extensions

More terms from Ray Chandler, May 31 2003
More terms from Ray Chandler, Aug 04 2003
Showing 1-3 of 3 results.