cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084006 Squares arising as a concatenation of k and 9's complement of k.

Original entry on oeis.org

36, 81, 1089, 4356, 9801, 110889, 443556, 998001, 11108889, 44435556, 99980001, 1111088889, 4444355556, 9999800001, 111110888889, 444443555556, 999998000001, 11111108888889, 44444435555556, 99999980000001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 23 2003

Keywords

Comments

From Robert Israel, Sep 09 2020: (Start)
Numbers of the form j^2*x*(10^k-1) where x = A007913(10^k-1) and 10^(k-1)+1 <= j^2*x <= 10^k-1.
If k >= 2 is not in A046412, there are only three terms with 2*k digits, namely (10^k-1)^2/9, 4*(10^k-1)^2/9, and 9*(10^k-1)^2/9.
The first term not of one of those three forms is a(25)=197530863802469136.
(End)

Examples

			1089 = 33^2 is a concatenation of 10 and 89, 10+89 = 99.
		

Crossrefs

Programs

  • Maple
    f:= proc(k) local F,x,p,t;
      p:= 10^k-1;
      F:= select(t -> t[2]::odd, ifactors(p)[2]);
      x:= mul(t[1],t=F);
      seq(j^2*x*p, j=ceil(sqrt((10^(k-1)+1)/x))..floor(sqrt(p/x)))
    end proc:
    map(f, [$1..20]); # Robert Israel, Sep 09 2020
  • Python
    from itertools import count, islice
    from math import prod, isqrt
    from sympy import factorint
    def A084006_gen(): # generator of terms
        for l in count(1):
            m = 10**l-1
            x = prod(p for p, e in factorint(m).items() if e&1)
            yield from (j**2*x*m for j in range(isqrt(10**(l-1)//x)+1,isqrt(m//x)+1))
    A084006_list = list(islice(A084006_gen(),20)) # Chai Wah Wu, Mar 20 2025

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed by Robert Israel, Sep 09 2020

A084004 Squares obtained as a concatenation of k and 10's complement of k.

Original entry on oeis.org

64, 7921, 9604, 164836, 351649, 996004, 19758025, 20647936, 29757025, 30846916, 97990201, 99960004, 1203187969, 1975180249, 3086469136, 4265657344, 8143618564, 9999600004, 115644884356, 131504868496, 132231867769, 140039859961, 173879826121, 339900660100, 391600608400
Offset: 1

Views

Author

Amarnath Murthy, May 23 2003

Keywords

Crossrefs

Programs

  • PARI
    b(n)={my(k=logint(n,10)+1); (n+1)*10^k - n}
    { for(k=1, 10^6, my(x=b(k)); if(issquare(x), print1(x, ", "))) } \\ Andrew Howroyd, Sep 22 2024

Formula

a(n) = A084005(n)^2. - Andrew Howroyd, Sep 21 2024

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed and a(22) onwards from Andrew Howroyd, Sep 21 2024

A087094 a(n) = smallest k such that (10^k-1)/9 == 0 mod prime(n)^2, or 0 if no such k exists.

Original entry on oeis.org

0, 9, 0, 42, 22, 78, 272, 342, 506, 812, 465, 111, 205, 903, 2162, 689, 3422, 3660, 2211, 2485, 584, 1027, 3403, 3916, 9312, 404, 3502, 5671, 11772, 12656, 5334, 17030, 1096, 6394, 22052, 11325, 12246, 13203, 27722, 7439, 31862, 32580, 18145, 37056, 19306
Offset: 1

Views

Author

Ray Chandler, Aug 10 2003

Keywords

Comments

For a given a(n)>0, all of the values of k such that (10^k-1)/9=0 mod prime(n)^2 is given by the sequence a(n)*A000027, i.e. integral multiples of a(n). For example, for n=2, prime(2)=3, a(n)=9, the set of values of k for which (10^k-1)/9=0 mod 3^2 is 9*A000027=9,18,27,36,45,...
The union of the collection of sequences formed from the nonzero terms of a(n)*A000027, gives the values of k for which (10^k-1)/9 is not squarefree, see A046412. All of terms of the sequence a(n) are integer multiples of prime(n) for primes <1000 except for a(93)=486 where prime(93)=487. Conjecture: there are no 0 terms after a(3).
That conjecture is easily proved, for a(n) is just the multiplicative order of 10 modulo (prime(n))^2 for n>3. - Jeppe Stig Nielsen, Dec 28 2015

Examples

			a(2)=9 since 9 is least value of k for which (10^k-1)/9=0 mod 3^2.
		

Crossrefs

Programs

  • Maple
    0,9,0,seq(numtheory:-order(10,ithprime(i)^2), i=4..100); # Robert Israel, Dec 30 2015
  • PARI
    a(n)=p=prime(n);10%p==0 && return(0);for(k=1,p^2,((10^k-1)/9) % p^2 == 0 && return(k));error() \\ Jeppe Stig Nielsen, Dec 28 2015
    
  • PARI
    a(n)=p=prime(n);if(10%p==0, 0, 10%p==1, 9, znorder(Mod(10,p^2))) \\ Jeppe Stig Nielsen, Dec 28 2015

Formula

For n>3, a(n) = A084680(prime(n)^2) = A084680(A001248(n)), Jeppe Stig Nielsen, Dec 28 2015

A084005 a(n) = sqrt(A084004(n)).

Original entry on oeis.org

8, 89, 98, 406, 593, 998, 4445, 4544, 5455, 5554, 9899, 9998, 34687, 44443, 55556, 65312, 90242, 99998, 340066, 362636, 363637, 374219, 416989, 583010, 625780, 636362, 637363, 659933, 702703, 703702, 713285, 714286, 780625, 922076, 923077
Offset: 1

Views

Author

Amarnath Murthy, May 23 2003

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed by Andrew Howroyd, Sep 22 2024
Showing 1-4 of 4 results.