cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084007 a(n) = A084006(n)^(1/2).

Original entry on oeis.org

6, 9, 33, 66, 99, 333, 666, 999, 3333, 6666, 9999, 33333, 66666, 99999, 333333, 666666, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 333333333, 444444444, 555555555, 666666666, 777777777, 888888888, 999999999
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 23 2003

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from math import prod, isqrt
    from sympy import factorint
    def A084007_gen(): # generator of terms
        for l in count(1):
            m = 10**l-1
            x = prod(p for p, e in factorint(m).items() if e&1)
            y = isqrt(x*m)
            yield from (j*y for j in range(isqrt(10**(l-1)//x)+1,isqrt(m//x)+1))
    A084007_list = list(islice(A084007_gen(),30)) # Chai Wah Wu, Mar 20 2025

Formula

Pattern exhibited by early terms does not continue without interruption. First disruption occurs at a(25)=444444444. Terms with k-digits exhibit the earlier pattern where (10^k-1)/9 is squarefree and k=9 is the first occurrence where (10^k-1)/9 is not squarefree. Others occur at k=18, 22, 27, 36, 42, 44, 45. - Ray Chandler, Aug 04 2003

Extensions

More terms from Ray Chandler, May 31 2003
More terms from Ray Chandler, Aug 04 2003

A046412 Lengths of nonsquarefree repunits.

Original entry on oeis.org

9, 18, 22, 27, 36, 42, 44, 45, 54, 63, 66, 72, 78, 81, 84, 88, 90, 99, 108, 110, 111, 117, 126, 132, 135, 144, 153, 154, 156, 162, 168, 171, 176, 180, 189, 198, 205, 207, 210, 216, 220, 222, 225, 234, 242, 243, 252, 261, 264, 270, 272, 279, 286, 288, 294, 297, 306, 308, 312, 315, 324, 330, 333, 336, 342, 351, 352
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

This is the set of all positive multiples of all positive members of A087094. What is the asymptotic density of this set? - Jeppe Stig Nielsen, Dec 28 2015

Crossrefs

Programs

  • Maple
    remove(t -> numtheory:-issqrfree((10^t-1)/9), [$1..90]); # Robert Israel, Dec 30 2015
  • Mathematica
    Select[Range[300],!SquareFreeQ[(10^#-1)/9]&] (* Harvey P. Dale, Jun 26 2013 *)
  • PARI
    isok(n) = ! issquarefree((10^n-1)/9); \\ Michel Marcus, Dec 31 2015

Formula

a(n)=k where (10^k-1)/9 is not squarefree. - Ray Chandler, Aug 10 2003

Extensions

Terms to a(60) from Ray Chandler, Aug 10 2003
a(61)-a(67) from Max Alekseyev, Apr 29 2022

A084004 Squares obtained as a concatenation of k and 10's complement of k.

Original entry on oeis.org

64, 7921, 9604, 164836, 351649, 996004, 19758025, 20647936, 29757025, 30846916, 97990201, 99960004, 1203187969, 1975180249, 3086469136, 4265657344, 8143618564, 9999600004, 115644884356, 131504868496, 132231867769, 140039859961, 173879826121, 339900660100, 391600608400
Offset: 1

Views

Author

Amarnath Murthy, May 23 2003

Keywords

Crossrefs

Programs

  • PARI
    b(n)={my(k=logint(n,10)+1); (n+1)*10^k - n}
    { for(k=1, 10^6, my(x=b(k)); if(issquare(x), print1(x, ", "))) } \\ Andrew Howroyd, Sep 22 2024

Formula

a(n) = A084005(n)^2. - Andrew Howroyd, Sep 21 2024

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed and a(22) onwards from Andrew Howroyd, Sep 21 2024

A087094 a(n) = smallest k such that (10^k-1)/9 == 0 mod prime(n)^2, or 0 if no such k exists.

Original entry on oeis.org

0, 9, 0, 42, 22, 78, 272, 342, 506, 812, 465, 111, 205, 903, 2162, 689, 3422, 3660, 2211, 2485, 584, 1027, 3403, 3916, 9312, 404, 3502, 5671, 11772, 12656, 5334, 17030, 1096, 6394, 22052, 11325, 12246, 13203, 27722, 7439, 31862, 32580, 18145, 37056, 19306
Offset: 1

Views

Author

Ray Chandler, Aug 10 2003

Keywords

Comments

For a given a(n)>0, all of the values of k such that (10^k-1)/9=0 mod prime(n)^2 is given by the sequence a(n)*A000027, i.e. integral multiples of a(n). For example, for n=2, prime(2)=3, a(n)=9, the set of values of k for which (10^k-1)/9=0 mod 3^2 is 9*A000027=9,18,27,36,45,...
The union of the collection of sequences formed from the nonzero terms of a(n)*A000027, gives the values of k for which (10^k-1)/9 is not squarefree, see A046412. All of terms of the sequence a(n) are integer multiples of prime(n) for primes <1000 except for a(93)=486 where prime(93)=487. Conjecture: there are no 0 terms after a(3).
That conjecture is easily proved, for a(n) is just the multiplicative order of 10 modulo (prime(n))^2 for n>3. - Jeppe Stig Nielsen, Dec 28 2015

Examples

			a(2)=9 since 9 is least value of k for which (10^k-1)/9=0 mod 3^2.
		

Crossrefs

Programs

  • Maple
    0,9,0,seq(numtheory:-order(10,ithprime(i)^2), i=4..100); # Robert Israel, Dec 30 2015
  • PARI
    a(n)=p=prime(n);10%p==0 && return(0);for(k=1,p^2,((10^k-1)/9) % p^2 == 0 && return(k));error() \\ Jeppe Stig Nielsen, Dec 28 2015
    
  • PARI
    a(n)=p=prime(n);if(10%p==0, 0, 10%p==1, 9, znorder(Mod(10,p^2))) \\ Jeppe Stig Nielsen, Dec 28 2015

Formula

For n>3, a(n) = A084680(prime(n)^2) = A084680(A001248(n)), Jeppe Stig Nielsen, Dec 28 2015

A084005 a(n) = sqrt(A084004(n)).

Original entry on oeis.org

8, 89, 98, 406, 593, 998, 4445, 4544, 5455, 5554, 9899, 9998, 34687, 44443, 55556, 65312, 90242, 99998, 340066, 362636, 363637, 374219, 416989, 583010, 625780, 636362, 637363, 659933, 702703, 703702, 713285, 714286, 780625, 922076, 923077
Offset: 1

Views

Author

Amarnath Murthy, May 23 2003

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, May 31 2003
Offset changed by Andrew Howroyd, Sep 22 2024
Showing 1-5 of 5 results.