A084126 Prime factor <= other prime factor of n-th semiprime.
2, 2, 3, 2, 2, 3, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 17, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Semiprime
Crossrefs
Programs
-
Haskell
a084126 = a020639 . a001358 -- Reinhard Zumkeller, Nov 25 2012
-
Mathematica
FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
-
Python
from sympy import primepi, primerange, primefactors def A084126(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return min(primefactors(bisection(f,n,n))) # Chai Wah Wu, Apr 03 2025
Comments