cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006668 Exponential self-convolution of Pell numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 6, 32, 160, 784, 3808, 18432, 89088, 430336, 2078208, 10035200, 48455680, 233967616, 1129701376, 5454692352, 26337607680, 127169265664, 614027624448, 2964787822592, 14315262312448, 69120201588736
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A084150. - Paul Barry, May 16 2003

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(8))^n+(2-Sqrt(8))^n-2^(n+1))/16): n in [0..30] ]; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    LinearRecurrence[{6,-4,-8},{0,0,1},30] (* Harvey P. Dale, Jul 15 2014 *)
    Table[2^(n-4)*(LucasL[n, 2] - 2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)

Formula

a(n) = ((2+sqrt(8))^n+(2-sqrt(8))^n-2^(n+1))/16; E.g.f. : exp(2x)(sinh(sqrt(2)x))^2/4=(exp(x)sinh(sqrt(2)x)/sqrt(2))^2/2. - Paul Barry, May 16 2003
G.f.: x^2/((1-2*x)*(1-4*x-4*x^2)). - Bruno Berselli, Aug 20 2011
a(n) = A006646(n)/2 = 2^(n-4)*(A002203(n) - 2). - Vladimir Reshetnikov, Oct 07 2016

A084151 Binomial transform of a Pell convolution.

Original entry on oeis.org

0, 0, 1, 9, 62, 390, 2359, 14007, 82412, 482652, 2820061, 16457397, 95983370, 559619970, 3262267891, 19015581699, 110836005272, 646014798840, 3765295834489, 21945889348257, 127910427675542, 745517838966462
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A006668. Second binomial transform of A084150.

Crossrefs

Programs

  • Magma
    [(Evaluate(ChebyshevFirst(n), 2) -3^n)/8: n in [0..40]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{9,-19,3},{0,0,1},30] (* Harvey P. Dale, Jun 06 2021 *)
  • SageMath
    [(chebyshev_T(n, 3) - 3^n)/8 for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ( (3+sqrt(8))^n + (3-sqrt(8))^n - 2*3^n )/16.
E.g.f.: (1/4)*exp(3*x)*( sinh(sqrt(2)*x) )^2.
G.f.: x^2 / ( (1-3*x)*(1-6*x+x^2) ). - R. J. Mathar, Sep 27 2012
a(n) = (A001541(n) - 3^n)/8. - R. J. Mathar, Sep 27 2012
a(n) = (1/8)*(ChebyshevT(n, 3) - 3^n) = (A001541(n) - A000244(n))/8. - G. C. Greubel, Oct 11 2022
Showing 1-2 of 2 results.