cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084170 a(n) = (5*2^n + (-1)^n - 3)/3.

Original entry on oeis.org

1, 2, 6, 12, 26, 52, 106, 212, 426, 852, 1706, 3412, 6826, 13652, 27306, 54612, 109226, 218452, 436906, 873812, 1747626, 3495252, 6990506, 13981012, 27962026, 55924052, 111848106, 223696212, 447392426, 894784852, 1789569706, 3579139412
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Original name of this sequence: Generalized Jacobsthal numbers.

Crossrefs

Cf. A000225 (Mersenne numbers), A001045 (Jacobsthal numbers).

Programs

  • Magma
    [(5*2^n +(-1)^n)/3 -1: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,2,6},40] (* or *) Table[(5*2^n+(-1)^n-3)/3,{n,0,40}] (* Harvey P. Dale, Jan 29 2012 *)
  • PARI
    a(n)=(5*2^n)\/3-1 \\ Charles R Greathouse IV, Jul 01 2011
    
  • SageMath
    [(2/3)*(5*2^(n-1) -1 -(n%2)) for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=1, a(1)=2.
G.f.: (1+x^2)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: 5*exp(2*x)/3 - exp(x) + exp(-x)/3.
a(n+1) = A000975(n+2) + A000975(n).
a(2*n+1) - 2 = 10*A000975(n).
a(2*n+2) - 6 = 20*A000975(n).
a(n+2*k) - a(n) = 5*A002450(k)*2^n = A146882(k-1)*2^n, k >= 0. - Paul Curtz, Jun 15 2011
From Yosu Yurramendi, Jul 05 2016: (Start)
a(n) = A169969(2n) - 1, n >= 1; a(n) = 3*2^(n-1) - 1 + A169969(2n-7), n >= 5.
a(n+3) = 15*2^n - 2 - a(n), n >= 0, a(0)=1, a(1)=2, a(2)=6.
a(n) + A026644(n) = 3*2^n - 2, n >= 1.
a(n+3) = 3*2^(n+2) + A026644(n), n >= 1. (End)
a(n) = A000225(n+1) - A001045(n). - Yuchun Ji, Mar 17 2020