A084170 a(n) = (5*2^n + (-1)^n - 3)/3.
1, 2, 6, 12, 26, 52, 106, 212, 426, 852, 1706, 3412, 6826, 13652, 27306, 54612, 109226, 218452, 436906, 873812, 1747626, 3495252, 6990506, 13981012, 27962026, 55924052, 111848106, 223696212, 447392426, 894784852, 1789569706, 3579139412
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Crossrefs
Programs
-
Magma
[(5*2^n +(-1)^n)/3 -1: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
Mathematica
LinearRecurrence[{2,1,-2},{1,2,6},40] (* or *) Table[(5*2^n+(-1)^n-3)/3,{n,0,40}] (* Harvey P. Dale, Jan 29 2012 *)
-
PARI
a(n)=(5*2^n)\/3-1 \\ Charles R Greathouse IV, Jul 01 2011
-
SageMath
[(2/3)*(5*2^(n-1) -1 -(n%2)) for n in range(41)] # G. C. Greubel, Oct 11 2022
Formula
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=1, a(1)=2.
G.f.: (1+x^2)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: 5*exp(2*x)/3 - exp(x) + exp(-x)/3.
a(2*n+1) - 2 = 10*A000975(n).
a(2*n+2) - 6 = 20*A000975(n).
From Yosu Yurramendi, Jul 05 2016: (Start)
a(n+3) = 15*2^n - 2 - a(n), n >= 0, a(0)=1, a(1)=2, a(2)=6.
a(n) + A026644(n) = 3*2^n - 2, n >= 1.
a(n+3) = 3*2^(n+2) + A026644(n), n >= 1. (End)
Comments