cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082539 Primes p such that there is no prime q, q < p with q+1 dividing p+1.

Original entry on oeis.org

2, 3, 13, 37, 61, 73, 109, 157, 193, 229, 241, 277, 313, 337, 373, 397, 409, 421, 457, 541, 577, 613, 661, 673, 709, 733, 757, 829, 877, 997, 1009, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297, 1321, 1381, 1453, 1489, 1597, 1621, 1657
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Comments

Contains A005383, primes p such that (p+1)/2 is prime. - T. D. Noe, Apr 28 2004

Crossrefs

Cf. A092307 (primes p such that there are no primes q, 3 < q < p, such that (q-1) divides (p-1)).

Programs

  • Mathematica
    Select[Prime[Range[260]], AllTrue[Most[Divisors[# + 1]], !PrimeQ[#1 - 1] &] &] (* Amiram Eldar, Jun 06 2022 *)

Formula

A084196(A049084(a(n))) = 0.

Extensions

More terms from Reinhard Zumkeller, May 18 2003

A084198 Primes p such that there exists exactly one prime q

Original entry on oeis.org

5, 7, 19, 43, 67, 97, 163, 181, 211, 283, 331, 349, 523, 547, 601, 691, 787, 853, 907, 937, 1021, 1051, 1123, 1171, 1429, 1531, 1549, 1723, 1777, 1867, 2011, 2029, 2053, 2083, 2113, 2251, 2281, 2347, 2371, 2467, 2521, 2707, 2731, 2749, 2803, 2971, 3067
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

A084196(A049084(a(n)))=1.

Programs

  • Haskell
    a084198 n = a084198_list !! (n-1)
    a084198_list = map a000040 $ filter ((== 1) . a084196) [1..]
    -- Reinhard Zumkeller, Jan 06 2014
  • Mathematica
    pdQ[n_]:=Module[{prs=Prime[Range[500]],p1},p1=Select[prs,#?(Divisible[n+1,#]&)]==1]; Select[Prime[Range[500]],pdQ] (* _Harvey P. Dale, Dec 24 2013 *)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A084200 LeastCommonMultiple{q+1: q prime, q < prime(n), q+1 divides prime(n)+1}.

Original entry on oeis.org

1, 1, 3, 4, 12, 1, 6, 4, 24, 6, 8, 1, 42, 4, 24, 18, 60, 1, 4, 72, 1, 40, 84, 90, 14, 6, 8, 108, 1, 114, 32, 132, 6, 140, 30, 152, 1, 4, 168, 6, 180, 14, 96, 1, 18, 40, 4, 224, 228, 1, 18, 240, 1, 252, 6, 264, 270, 136, 1, 6, 4, 294, 308, 312, 1, 6, 4, 1, 348, 14, 6, 360, 8, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Crossrefs

Programs

  • Python
    from math import lcm
    from sympy import sieve
    def a(n):
        pn = sieve[n]
        return lcm(*[q+1 for q in sieve.primerange(2, pn) if (pn+1)%(q+1)==0])
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Aug 13 2024

Extensions

Definition and terms corrected by Matthew House, Aug 13 2024

A084197 Primes p such that there exists at least one prime q

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 349, 353
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

A084196(A049084(a(n)))>0.

Crossrefs

Extensions

Corrected by T. D. Noe, Oct 25 2006

A084199 Smallest prime q < prime(n) such that q+1 divides prime(n)+1, a(n) = 1 if no such q exists.

Original entry on oeis.org

1, 1, 2, 3, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 1, 3, 2, 1, 3, 2, 2, 13, 2, 3, 2, 1, 2, 3, 2, 2, 3, 2, 3, 1, 3, 2, 2, 2, 13, 2, 1, 2, 3, 3, 3, 2, 1, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 2, 3, 2, 1, 2, 3, 1, 2, 13, 2, 2, 3, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 13, 3, 2, 2, 1, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 1, 3, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

Conjecture: A008578 is the range of values (or A000040 = range of values > 1).

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{p = Prime[Range[lim]], q, s = {}}, Do[q = SelectFirst[p, Divisible[p[[i]] + 1, # + 1] &]; AppendTo[s, If[q < p[[i]], q, 1]], {i, 1, Length[p]}]; s]; seq[100] (* Amiram Eldar, Mar 28 2025 *)

Formula

a(n) = 1 iff A084196(n) = 0.
Showing 1-5 of 5 results.