cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084196 Number of primes q

Original entry on oeis.org

0, 0, 1, 1, 3, 0, 2, 1, 5, 2, 2, 0, 3, 1, 6, 3, 6, 0, 1, 7, 0, 3, 6, 4, 1, 2, 2, 6, 0, 3, 3, 5, 2, 3, 3, 3, 0, 1, 9, 2, 9, 1, 8, 0, 3, 3, 1, 4, 6, 0, 3, 11, 0, 8, 2, 8, 6, 3, 0, 2, 1, 5, 3, 7, 0, 2, 1, 0, 5, 1, 2, 13, 2, 0, 3, 10, 3, 0, 2, 0, 11, 0, 11, 2, 5, 5, 6, 0, 4, 2, 6, 13, 2, 5, 2, 13, 4, 4, 1, 0, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

a(A049084(A082539(n)))=0, a(A049084(A084197(n)))>0, a(A049084(A084198(n)))=1;

Examples

			n=5, prime(5)=11: (11+1) mod (q+1) = 0 for 3 primes q<11: 2, 3,
and 5, therefore a(5)=3.
		

Crossrefs

Programs

  • Haskell
    a084196 n = a084196_list !! (n-1)
    a084196_list = f [] a000040_list where
       f ps' (p:ps) = length [q | q <- ps', mod (p + 1) (q + 1) == 0] :
                      f (p : ps') ps where
    -- Reinhard Zumkeller, Jan 06 2014
  • Mathematica
    Table[Count[Mod[p+1,Prime[Range[PrimePi[p]-1]]+1],0],{p,Prime[Range[110]]}] (* Harvey P. Dale, Aug 11 2023 *)

A084200 LeastCommonMultiple{q+1: q prime, q < prime(n), q+1 divides prime(n)+1}.

Original entry on oeis.org

1, 1, 3, 4, 12, 1, 6, 4, 24, 6, 8, 1, 42, 4, 24, 18, 60, 1, 4, 72, 1, 40, 84, 90, 14, 6, 8, 108, 1, 114, 32, 132, 6, 140, 30, 152, 1, 4, 168, 6, 180, 14, 96, 1, 18, 40, 4, 224, 228, 1, 18, 240, 1, 252, 6, 264, 270, 136, 1, 6, 4, 294, 308, 312, 1, 6, 4, 1, 348, 14, 6, 360, 8, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Crossrefs

Programs

  • Python
    from math import lcm
    from sympy import sieve
    def a(n):
        pn = sieve[n]
        return lcm(*[q+1 for q in sieve.primerange(2, pn) if (pn+1)%(q+1)==0])
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Aug 13 2024

Extensions

Definition and terms corrected by Matthew House, Aug 13 2024

A084197 Primes p such that there exists at least one prime q

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 349, 353
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

A084196(A049084(a(n)))>0.

Crossrefs

Extensions

Corrected by T. D. Noe, Oct 25 2006

A164623 Primes p such that p*(p-1)/2-5 and p*(p-1)/2+5 are also prime numbers.

Original entry on oeis.org

13, 157, 673, 1069, 1117, 1153, 1213, 1597, 2029, 2089, 2437, 2713, 2833, 3613, 4057, 4909, 5653, 6337, 6529, 7549, 7993, 8053, 9613, 10789, 11497, 11689, 12073, 12373, 13309, 13669, 13789, 14173, 15289, 15937, 16249, 18097, 18637, 19249, 19993
Offset: 1

Views

Author

Keywords

Comments

Primes A000040(k) such that A008837(k)+-5 are also prime numbers.

Examples

			13 is in the sequence because 13*6-5=73 and 13*6+5=83 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2300]], PrimeQ[# (# - 1)/2 - 5] && PrimeQ[# (# - 1)/2 + 5] &]
  • PARI
    forprime(p=2,10^6,my(b=binomial(p,2));if(isprime(b-5)&isprime(b+5),print1(p,", "))); /* Joerg Arndt, Apr 10 2013 */

Extensions

Edited by R. J. Mathar, Aug 20 2009
Mathematica code adapted to the definition by Bruno Berselli, Apr 10 2013

A300984 Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both squarefree numbers.

Original entry on oeis.org

676, 1352, 2704, 5408, 5476, 8788, 10816, 10952, 14884, 21316, 21632, 21904, 29768, 35152, 42632, 43264, 43808, 59536, 70304, 85264, 86528, 95048, 114244, 119072, 140608, 148996, 170528, 173056, 175232, 190096, 202612, 209764, 228488, 238144, 262088, 281216
Offset: 1

Views

Author

Michel Lagneau, Mar 17 2018

Keywords

Comments

Conjecture: a(n) is of the form a(n) = 2^i*p^j with i, j integers and p prime. This has been verified for n up to 10^7.
Observation: For n < = 10^7, p belongs to the set E = {13, 37, 61, 73, 109, 157, 181, 193, 229, 277, 313, 373, 397, 409, 421, 433, 457, 541, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1297, 1381, 1429, 1453, 1489}. We observe that E minus {181, 433, 601, 769, 853, 1021, 1429} belongs to A082539.
Generalization: For n <= 10^m with m > 7, it is conjectured that a majority of primes p where a(n) = 2^i*p^j are in A082539. For example, with m = 7, 84% of the primes p are in A082539.

Examples

			676 is in the sequence because A048250(676) = 42 = 2*3*7 and A162296(676) = 1239 = 3*7*59 are both squarefree numbers.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[SquareFreeQ[Total[Select[Divisors[n],SquareFreeQ]]]&& SquareFreeQ[DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]]],AppendTo[lst,n]],{n,300000}];lst
  • PARI
    isok(n) = my(sd = sumdiv(n,d,d*issquarefree(d))); issquarefree(sd) && issquarefree(sigma(n) - sd); \\ Michel Marcus, Mar 17 2018
Showing 1-5 of 5 results.