cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Comments

First differs from A084227 in having 60.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
		

Crossrefs

Zeros of A328958.
The complement is A328957.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - omega(n) * Omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) = A001222(a(n)) * A001221(a(n)).

A323090 Number of strict factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 4, 1, 2, 2, 2, 2, 5, 1, 2, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(72) = 4 factorizations are (2*3*12), (3*24), (6*12), (72). Missing from this list and not strict are (2*2*2*3*3), (2*2*3*6), (2*6*6), (2*2*18), while missing from the list and using perfect powers are (2*36), (2*4*9), (3*4*6), (4*18), (8*9).
		

Crossrefs

Positions of 0's are A246547.
Positions of 1's are A000040.
Positions of 2's are A084227.
Positions of 3's are A085986.
Positions of 4's are A143610.

Programs

  • Mathematica
    radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1];
    facssr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facssr[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facssr[n]],{n,100}]

A082878 Arithmetic derivative of numbers of the form p*q^k with distinct primes p and q, k > 0.

Original entry on oeis.org

5, 7, 16, 9, 8, 21, 24, 10, 13, 44, 15, 32, 14, 19, 12, 21, 16, 68, 48, 39, 25, 112, 45, 20, 56, 81, 16, 92, 22, 31, 33, 51, 18, 72, 26, 39, 55, 80, 18, 176, 43, 22, 45, 32, 140, 20, 96, 34, 49, 24, 272, 77, 75, 164, 55, 40, 240, 28, 120, 87, 61, 24, 63, 44, 128, 46, 26, 69
Offset: 1

Views

Author

Reinhard Zumkeller, May 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], i}, If[Length[f] == 2 && Min[f[[;;, 2]]] == 1, i = FirstPosition[f[[;;, 2]], 1][[1]]; n * (1/f[[i, 1]] + f[[3-i, 2]] /f[[3-i, 1]]), Nothing]]; Array[s, 100] (* Amiram Eldar, Mar 25 2025 *)

Formula

a(n) = A003415(A084227(n)).
a(p*q^k) = (p+q)*q^(k-1).

Extensions

Data corrected by Amiram Eldar, Mar 25 2025

A105642 Composite nonsquares and noncubes.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Zak Seidov, May 03 2005

Keywords

Crossrefs

Programs

  • Mathematica
    nn=200; Complement[Range[nn], Prime[Range[PrimePi[nn]]], Range[Sqrt[nn]]^2, Range[nn^(1/3)]^3]  (* Harvey P. Dale, Jan 26 2011 *)
  • PARI
    is(n)=n>1 && !isprime(n) && !issquare(n) && !ispower(n,3) \\ Charles R Greathouse IV, Oct 19 2015

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Oct 19 2015
Showing 1-4 of 4 results.