cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084261 A binomial transform of factorial numbers.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 52, 134, 361, 1009, 2926, 8768, 27121, 86373, 282864, 950866, 3277169, 11564353, 41739130, 153919324, 579411641, 2224535125, 8703993420, 34681783422, 140637608089, 580019801201, 2431509498406, 10355296410712
Offset: 0

Views

Author

Paul Barry, May 26 2003

Keywords

Comments

Binomial transform of A000142 (with interpolated zeros).
Row sums of A161556. Hankel transform is A137704. [Paul Barry, Apr 11 2010]

Programs

  • Mathematica
    Table[Sum[Binomial[n,2*k]*k!, {k,0,Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Jan 24 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,floor(n/2), binomial(n,2*k)*k!), ", ")) \\ G. C. Greubel, Jan 24 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*k!.
a(n) = Sum_{k=0..n} C(n, k)*(k/2)!*((1+(-1)^k)/2) .
E.g.f.: exp(x)*(1+sqrt(Pi)/2*x*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
O.g.f.: A(x) = 1/(1-x-x^2/(1-x-x^2/(1-x-2*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-[(n+1)/2]*x^2/(1- ...))))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a_n ~ (1/2) * sqrt(Pi*n/e)*(n/2)^(n/2)*exp(-n/2 + sqrt(2n)). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006: (cf. A002896).
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012