cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A002896 Number of 2n-step polygons on cubic lattice.

Original entry on oeis.org

1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0

Views

Author

Keywords

Comments

Number of walks with 2n steps on the cubic lattice Z^3 beginning and ending at (0,0,0).
If A is a random matrix in USp(6) (6 X 6 complex matrices that are unitary and symplectic) then a(n) is the 2n-th moment of tr(A^k) for all k >= 7. - Andrew V. Sutherland, Mar 24 2008
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
Constant term in the expansion of (x + 1/x + y + 1/y + z + 1/z)^(2n). - Harry Richman, Apr 29 2020

Examples

			1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

C(2n, n) times A002893.
Related to diagonal of rational functions: A268545-A268555.
Row k=3 of A287318.

Programs

  • Maple
    a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end;
    # second Maple program
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          (2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
           -36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 02 2012
    A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
  • PARI
    a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
    
  • Sage
    def A002896():
        x, y, n = 1, 6, 1
        while True:
            yield x
            n += 1
            x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
    a = A002896()
    [next(a) for i in range(17)]  # Peter Luschny, Oct 09 2013

Formula

a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
G.f.: HeunG(1/9,1/12,1/4,3/4,1,1/2,4*x)^2 (see Hassani et al.). - Stefano Spezia, Feb 16 2025

A081124 Binomial transform of floor(n/2)!.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Floor[k/2]!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(n,k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017

Formula

a(n) = Sum_{k=0..n} C(n, k)*floor(k/2)!.
E.g.f.: exp(x)*(1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(Pi*n)/2 * exp(sqrt(2*n)-n/2-1/2)*(n/2)^(n/2) * (1+5/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013

A161556 Exponential Riordan array [1 + (sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2), x].

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 6, 0, 30, 0, 15, 0, 1, 0, 42, 0, 70, 0, 21, 0, 1, 24, 0, 168, 0, 140, 0, 28, 0, 1, 0, 216, 0, 504, 0, 252, 0, 36, 0, 1, 120, 0, 1080, 0, 1260, 0, 420, 0, 45, 0, 1
Offset: 0

Views

Author

Paul Barry, Jun 13 2009

Keywords

Comments

Row sums are A084261.

Examples

			Triangle begins
   1;
   0,   1;
   1,   0,   1;
   0,   3,   0,   1;
   2,   0,   6,   0,   1;
   0,  10,   0,  10,   0,   1;
   6,   0,  30,   0,  15,   0,   1;
   0,  42,   0,  70,   0,  21,   0,   1;
  24,   0, 168,   0, 140,   0,  28,   0,   1;
Production matrix begins
   0,   1;
   1,   0,   1;
   0,   2,   0,   1;
  -1,   0,   3,   0,   1;
   0,  -4,   0,   4,   0,   1;
   6,   0, -10,   0,   5,   0,   1;
   0,  36,   0, -20,   0,   6,   0,   1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Boole[k <= n] Binomial[n, k] ((n-k)/2)! (1 + (-1)^(n-k))/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)

Formula

T(n,k) = [k<=n]*binomial(n,k)*((n-k)/2)!*(1+(-1)^(n-k))/2.
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-2x^2/(1-x*y-2x^2/(1-x*y-3x^2/(1-... (continued fraction).

A137704 Hankel transform of aerated factorial numbers.

Original entry on oeis.org

1, 1, 1, 2, 8, 96, 3456, 497664, 286654464, 825564856320, 11888133931008000, 1027134771639091200000, 532466665617704878080000000, 1932215036193527461576704000000000
Offset: 0

Views

Author

Paul Barry, Feb 07 2008

Keywords

Comments

Hankel transform of A084261. Hankel transform of A000142 (n!) with interpolated zeros.
a(n+1) is the Hankel transform of A003319 aerated. [From Paul Barry, Oct 07 2008]

Formula

a(n):=Product{k=0..n, floor((k+2)/2)^(n-k)};
a(n) ~ n^(n^2/2 + 3*n/2 + 7/6) * Pi^(n + 3/2) / (A^4 * 2^(n^2/2 + n/2 - 1/3) * exp(3*n^2/4 + 3*n/2 - 1/3)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jan 20 2024

A156367 Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
Offset: 0

Views

Author

Paul Barry, Feb 08 2009

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,   2;
  1,  6,  10,    6;
  1, 10,  30,   42,    24;
  1, 15,  70,  168,   216,   120;
  1, 21, 140,  504,  1080,  1320,   720;
  1, 28, 252, 1260,  3960,  7920,  9360,  5040;
  1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
		

Crossrefs

Cf. A084261 (diagonal sums), A155856 (row reversal), A155857 (row sums)

Programs

  • Mathematica
    Flatten[Table[Binomial[n+k,2k]k!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 17 2015 *)
  • Sage
    flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x -x*y/(1 -x -x*y/(1 -x -2*x*y/(1 -x -2*x*y/(1 -x -3*x*y/(1 -x -3*x*y/(1 - ... (continued fraction).
T(n, k) = binomial(n+k, 2*k)*k!
T(n, k) = A155856(n, n-k).
Sum_{k=0..n} T(n, k) = A155857(n).
sum_{k=0..floor(n/2)} T(n, k) = A084261(n).

A162748 Row sums of factorial-Pascal matrix A162747.

Original entry on oeis.org

1, 2, 5, 14, 42, 132, 430, 1444, 4984, 17648, 64024, 237712, 902416, 3499680, 13853424, 55931168, 230142848, 964460288, 4113656704, 17846729984, 78708574976, 352678567424, 1604739694848, 7411167960576, 34723660917760
Offset: 0

Views

Author

Paul Barry, Jul 12 2009

Keywords

Comments

Second binomial transform of aerated factorial numbers. Binomial transform of A084261. Hankel transform is A137704.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*2^(n-k)*(k/2)!*(1+(-1)^k)/2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)

Formula

G.f.: 1/(1-2x-x^2/(1-2x-x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-3x^2/(1-2x-3x^2/(1-2x-4x^2/(1-2x-... (continued fraction);
a(n)=sum{k=0..floor(n/2), C(n,2k)*2^(n-2k)*F(k+1)}=sum{k=0..n, C(n,k)*2^(n-k)*(k/2)!*(1+(-1)^k)/2}.
a(n)=sum{k=0..n, A161556(n,k)*2^k}. - Paul Barry, Apr 11 2010
E.g.f.: exp(2x)*(1+(sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2)). - Paul Barry, Sep 17 2010
Apparently -2*a(n) +8*a(n-1) +(n-8)*a(n-2) +2*(2-n)*a(n-3)=0. - R. J. Mathar, Oct 25 2012
a(n) ~ 1/2 * sqrt(Pi*n) * exp(2*sqrt(2*n)-n/2-2) * (n/2)^(n/2) * (1 + 1/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013

Extensions

Minor edits by Vaclav Kotesovec, Jul 22 2015

A093190 Array t read by antidiagonals: number of {112,212}-avoiding words.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 21, 16, 5, 1, 10, 39, 52, 25, 6, 1, 12, 63, 136, 105, 36, 7, 1, 14, 93, 292, 365, 186, 49, 8, 1, 16, 129, 544, 1045, 816, 301, 64, 9, 1, 18, 171, 916, 2505, 3006, 1603, 456, 81, 10, 1, 20, 219, 1432, 5225, 9276, 7315, 2864, 657, 100, 11
Offset: 1

Views

Author

Ralf Stephan, Apr 20 2004

Keywords

Comments

t(k,n) = number of n-long k-ary words that simultaneously avoid the patterns 112 and 212.

Examples

			Square array begins as:
  1  1   1   1    1    1 ... 1*A000012;
  2  4   6   8   10   12 ... 2*A000027;
  3  9  21  39   63   93 ... 3*A002061;
  4 16  52 136  292  544 ... 4*A135859;
  5 25 105 365 1045 2505 ... ;
Antidiagonal rows begins as:
  1;
  1,  2;
  1,  4,  3;
  1,  6,  9,   4;
  1,  8, 21,  16,   5;
  1, 10, 39,  52,  25,  6;
  1, 12, 63, 136, 105, 36, 7;
		

Crossrefs

Main diagonal is A052852.
Antidiagonal sums are in A084261 - 1.

Programs

  • Magma
    [(&+[Factorial(j)*Binomial(k,j)*Binomial(n-k,j-1): j in [0..n-k+1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Sum[j!*Binomial[k, j]*Binomial[n-k, j-1], {j,0,n-k+1}];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • PARI
    t(n,k)=sum(j=0,k,j!*binomial(k,j)*binomial(n-1,j-1))
    
  • Sage
    flatten([[ sum(factorial(j)*binomial(k,j)*binomial(n-k,j-1) for j in (0..n-k+1)) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

t(n, k) = Sum{j=0..n} j!*C(n, j)*C(k-1, j-1). (square array)
T(n, k) = Sum_{j=0..n-k+1} j!*binomial(k,j)*binomial(n-k,j-1). (number triangle) - G. C. Greubel, Mar 09 2021

A113485 Number of partitions of [n] avoiding the pattern 12/34.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 367, 1114, 3423, 10670, 33841, 109398, 361045, 1217346, 4195267, 14775986, 53172411, 195396310, 732806677, 2802898190, 10926431393, 43381582538, 175311002903, 720640632074, 3011495745175, 12786738800254
Offset: 1

Views

Author

Adam Goyt, Jan 09 2006

Keywords

Comments

The first sum in the formula counts those partitions with a single block of size at least 3. The second sum counts those partitions with blocks of size at most 2. It's easy to see that to avoid 12/34 a partition cannot contain more than one block of size at least 3.
The elements shown satisfy the hypergeometric recurrence 2*a(n) -10*a(n-1) +(-n+13)*a(n-2) +2*(2*n+1)*a(n-3) +3*(-n-5)*a(n-4) +4*(-n+6)*a(n-5) +4*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2013

Examples

			For n=1,2,3 a(n)=B_n, where B_n is the n-th Bell number, since there aren't enough distinct elements for such a partition to contain a copy of 12/34. By a similar argument a(4)=B_4-1=14.
		

References

  • M. Klazar, Counting Pattern-free Set Partitions I: A Generalization of Stirling Numbers of the Second Kind, Europ. J. Combinatorics, Vol. 21 (2000), pp. 367-378.

Crossrefs

Cf. A084261.

Programs

  • Mathematica
    Table[Sum[Sum[(k+1)^2 Binomial[n, 2k+p] k!, {k, 0, Floor[(n-p)/2]}], {p, 3, n}]+Sum[Binomial[n, 2k] k!, {k, 0, Floor[n/2]}], {n, 1, 31}]
  • PARI
    a(n)=sum(p=3,n, sum(k=0,(n-p)\2, binomial(n,2*k+p)*(k+1)^2*k!)) + sum(k=0,n\2, binomial(n,2*k)) \\ Charles R Greathouse IV, Mar 12 2017

Formula

a(n) = Sum[Sum[(k+1)^2 binomial[n, 2k+p] k!, {k, 0, Floor[(n-p)/2]}], {p, 3, n}] + Sum[binomial[n, 2k] k!, {k, 0, Floor[n/2]}].
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: 2*(n^2-8*n+13)*a(n) = 2*(4*n^2-31*n+43)*a(n-1) + (n^3-17*n^2+87*n-91)*a(n-2) - (3*n^3-27*n^2+78*n-64)*a(n-3) + 2*(n-3)*(n^2-6*n+6)*a(n-4).
a(n) ~ sqrt(Pi) * exp(sqrt(2*n) - n/2 - 1/2) * n^(n/2 + 1) / 2^(n/2 + 3/2) * (1 + 4*sqrt(2)/(3*sqrt(n))). (End)

A174516 Partial sums of A002896.

Original entry on oeis.org

1, 7, 97, 1957, 46687, 1219243, 33715399, 970085119, 28740443449, 870830918389, 26860099935529, 840549807424369, 26620996978712269, 851664885506669269, 27482469263443730269, 893460843597349019629, 29235859228655427097639
Offset: 0

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Examples

			a(4) = 1 + 6 + 90 + 1860 + 44730 = 46687.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = (* A002896 *) Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; a[n_] := Sum[b[k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 20 2011 *)

Formula

a(n) = Sum_{i=0..n} A002896(i).
G.f.: g/(1-x) where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) ~ 2^(2*n) * 3^(2*n + 7/2) / (35 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Feb 17 2024

A372829 a(n) = n! * Sum_{k=0..floor(n/2)} k! / (2*k)!.

Original entry on oeis.org

1, 1, 3, 9, 38, 190, 1146, 8022, 64200, 577800, 5778120, 63559320, 762712560, 9915263280, 138813690960, 2082205364400, 33315285870720, 566359859802240, 10194477476803200, 193695072059260800, 3873901441188844800, 81351930264965740800, 1789742465829286214400
Offset: 0

Views

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Crossrefs

Programs

  • Maple
    A372829 := proc(n)
        add( k!/(2*k)!,k=0..floor(n/2)) ;
        %*n! ;
    end proc:
    seq(A372829(n),n=0..70) ; # R. J. Mathar, Sep 27 2024
  • Mathematica
    Table[n! Sum[k!/(2 k)!, {k, 0, Floor[n/2]}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[(1 + Sqrt[Pi] x Exp[x^2/4] Erf[x/2]/2)/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n\2,  k! / (2*k)!); \\ Michel Marcus, May 14 2024

Formula

E.g.f.: (1 + sqrt(Pi) * x * exp(x^2/4) * erf(x/2) / 2) / (1 - x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * k! * (n-2*k)!.
a(n) ~ n! * (1 + exp(1/4)*sqrt(Pi)*erf(1/2)/2). - Vaclav Kotesovec, May 14 2024
D-finite with recurrence 2*a(n) -2*n*a(n-1) -n*a(n-2) +n*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 27 2024
Showing 1-10 of 11 results. Next