cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084265 a(n) = (n^2 + 3*n + 1 + (-1)^n) / 2.

Original entry on oeis.org

1, 2, 6, 9, 15, 20, 28, 35, 45, 54, 66, 77, 91, 104, 120, 135, 153, 170, 190, 209, 231, 252, 276, 299, 325, 350, 378, 405, 435, 464, 496, 527, 561, 594, 630, 665, 703, 740, 780, 819, 861, 902, 946, 989, 1035, 1080, 1128, 1175, 1225, 1274, 1326, 1377, 1431, 1484
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Previous name was: Modified triangular numbers.
Binomial transform is A084266.
Partial sums give A064843. - N. J. A. Sloane, Jul 20 2008
Starting with "1" = triangle A171608 * the odd integers, (1, 3, 5, ...). - Gary W. Adamson, Dec 12 2009

Crossrefs

Programs

  • Magma
    [(n^2+3*n+1)/2+(-1)^n/2: n in [0..60]]; // Vincenzo Librandi, Aug 15 2013
    
  • Maple
    A084265:=n->(n^2+3*n+1)/2+(-1)^n/2: seq(A084265(n),n=0..100); # Wesley Ivan Hurt, Mar 21 2015
  • Mathematica
    CoefficientList[Series[(-1 - 2 x^2 + x^3) / ((1 + x) (x - 1)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 15 2013 *)
  • PARI
    vector(100,n,(n^2+n-1-(-1)^n)/2) \\ Derek Orr, Mar 22 2015

Formula

a(n) = A000217(n)+A059841(n)+n.
E.g.f.: cosh(x) + exp(x)*(2x+x^2/2).
a(n) = (n^2+3*n+1)/2+(-1)^n/2.
G.f.: ( -1-2*x^2+x^3 ) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Nov 26 2012
From Wesley Ivan Hurt, Mar 21 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = Sum_{i=0..n+1} i-(-1)^i. (End)
a(2*n) = A000384(n+1); a(2*n-1) = A014105(n)-1; a(2*n-1) = A014107(n+1), for all integers n. - Hartmut F. W. Hoft, Feb 02 2022

Extensions

New name from Joerg Arndt, Aug 15 2013