A084266 Binomial transform of A084265.
1, 3, 11, 34, 96, 256, 656, 1632, 3968, 9472, 22272, 51712, 118784, 270336, 610304, 1368064, 3047424, 6750208, 14876672, 32636928, 71303168, 155189248, 336592896, 727711744, 1568669696, 3372220416, 7230980096, 15468593152, 33017561088
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
[0^n/2+2^n*(n^2+7*n+4)/8: n in [0..35]]; // Vincenzo Librandi, Aug 13 2011
-
Mathematica
LinearRecurrence[{6,-12,8},{1,3,11,34},30] (* Harvey P. Dale, Dec 12 2021 *)
Formula
E.g.f.: exp(x)*cosh(x) + exp(2*x)*(2*x+x^2/2); a(n) = 0^n/2 + 2^n*(n^2 + 7*n + 4)/8.
a(n) = Sum_{k=0..n-1} a(k) + (n+2)*2^(n-1) - 1. - Philippe Deléham, Jul 12 2007
G.f.: (-4 + 13*x - 16*x^2 + 8*x^3)/(2*x-1)^3. - R. J. Mathar, Jan 06 2011
a(n) = (Sum_{k=0..n+1} binomial(n+1,k)*k^4)/((n+1)*(n+2)), n > 0. - Gary Detlefs, Nov 26 2011
Comments