A114112 a(1)=1, a(2)=2; thereafter a(n) = n+1 if n odd, n-1 if n even.
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1
A210796 Triangle of coefficients of polynomials v(n,x) jointly generated with A210795; see the Formula section.
1, 1, 2, 3, 3, 3, 3, 7, 6, 5, 5, 10, 16, 12, 8, 5, 16, 26, 34, 23, 13, 7, 21, 47, 64, 70, 43, 21, 7, 29, 68, 123, 147, 140, 79, 34, 9, 36, 104, 200, 304, 324, 274, 143, 55, 9, 46, 140, 324, 538, 714, 690, 527, 256, 89, 11, 55, 195, 480, 932, 1366, 1616, 1431
Offset: 1
Comments
Examples
First five rows: 1 1...2 3...3....3 3...7....6....5 5...10...16...12...8 First three polynomials v(n,x): 1, 1 + 2x, 3 + 3x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 1; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210795 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210796 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
A210798 Triangle of coefficients of polynomials v(n,x) jointly generated with A210797; see the Formula section.
1, 2, 2, 1, 3, 3, 2, 5, 7, 5, 1, 6, 12, 13, 8, 2, 8, 20, 29, 25, 13, 1, 9, 27, 51, 62, 46, 21, 2, 11, 39, 84, 125, 129, 84, 34, 1, 12, 48, 126, 224, 284, 258, 151, 55, 2, 14, 64, 182, 374, 562, 622, 505, 269, 89, 1, 15, 75, 250, 580, 1008, 1328, 1315, 969, 475
Offset: 1
Comments
Examples
First five rows: 1 2...2 1...3...3 2...5...7....5 1...6...12...13...8 First three polynomials v(n,x): 1, 2 + 2x, 1 + 3x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 0; h = 2; p = -1; f = 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210797 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210798 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A099232 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A006130 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A008346 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A039834 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
A376901 a(n) = (n*(n-1)+(-1)^n+5)/2.
3, 2, 4, 5, 9, 12, 18, 23, 31, 38, 48, 57, 69, 80, 94, 107, 123, 138, 156, 173, 193, 212, 234, 255, 279, 302, 328, 353, 381, 408, 438, 467, 499, 530, 564, 597, 633, 668, 706, 743, 783, 822, 864, 905, 949, 992, 1038, 1083, 1131, 1178, 1228, 1277, 1329, 1380, 1434
Offset: 0
Comments
For n >= 3, also the disorder number of the pan graph.
Links
- Eric Weisstein's World of Mathematics, Disorder Number.
- Eric Weisstein's World of Mathematics, Pan Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
Table[(n (n - 1) + 5 + (-1)^n)/2, {n, 20}] LinearRecurrence[{2, 0, -2, 1}, {2, 4, 5, 9}, {0, 20}]
Formula
a(n) = 2*a(n-1)-2*a(n-3)+1*a(n-4).
G.f.: x*(-2+3*x^2-3*x^3)/((-1+x)^3*(1+x)).
After initial terms same as {A114113}+2, {A236453}+1, ({A081353}+1)/2 + 2. Hugo Pfoertner, Oct 10 2024.
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Python
Formula
Extensions