cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084266 Binomial transform of A084265.

Original entry on oeis.org

1, 3, 11, 34, 96, 256, 656, 1632, 3968, 9472, 22272, 51712, 118784, 270336, 610304, 1368064, 3047424, 6750208, 14876672, 32636928, 71303168, 155189248, 336592896, 727711744, 1568669696, 3372220416, 7230980096, 15468593152, 33017561088
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

The sequence starting with a(1) is the binomial transform of A005563 starting with A005563(1). - Paul Curtz, Jan 02 2011

Programs

  • Magma
    [0^n/2+2^n*(n^2+7*n+4)/8: n in [0..35]]; // Vincenzo Librandi, Aug 13 2011
  • Mathematica
    LinearRecurrence[{6,-12,8},{1,3,11,34},30] (* Harvey P. Dale, Dec 12 2021 *)

Formula

E.g.f.: exp(x)*cosh(x) + exp(2*x)*(2*x+x^2/2); a(n) = 0^n/2 + 2^n*(n^2 + 7*n + 4)/8.
a(n) = Sum_{k=0..n-1} a(k) + (n+2)*2^(n-1) - 1. - Philippe Deléham, Jul 12 2007
G.f.: (-4 + 13*x - 16*x^2 + 8*x^3)/(2*x-1)^3. - R. J. Mathar, Jan 06 2011
a(n) = (Sum_{k=0..n+1} binomial(n+1,k)*k^4)/((n+1)*(n+2)), n > 0. - Gary Detlefs, Nov 26 2011