cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084423 Set partitions up to rotations.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 43, 127, 544, 2361, 11703, 61690, 351773, 2126497, 13639372, 92197523, 655035769, 4874404108, 37893370473, 306986431847, 2586209749712, 22612848403571, 204850732480285, 1919652428481930, 18581619724363401, 185543613289200949
Offset: 0

Views

Author

Wouter Meeussen, Jun 26 2003

Keywords

Comments

Partitions of n objects distinct under the cyclic group, C_n. By comparison the partition numbers (A000041) are the partitions distinct under the symmetric group, S_n and the set partitions are those distinct under the discrete group containing only the identity. - Franklin T. Adams-Watters, Jun 09 2008
Equivalently, number of n-bead necklaces using any number of unlabeled (interchangable) colors. - Andrew Howroyd, Sep 25 2017

Examples

			Of the Bell(4) = 15 set partitions of 4, only 7 remain distinct under rotation:
  {{1,2,3,4}},
  {{1}, {2,3,4}},
  {{1,2}, {3,4}},
  {{1,3}, {2,4}},
  {{1}, {2}, {3,4}},
  {{1}, {3}, {2,4}},
  {{1}, {2}, {3}, {4}}.
		

Crossrefs

Programs

  • Mathematica
    <Mod[i+1, n, 1])]&, #, n]]]& /@ SetPartitions[n]]; Table[ Length[ shrink[k]], {k, 11}]
    (* Second program (not needing Combinatorica): *)
    u[0, ] = 1; u[k, j_] := u[k, j] = Sum[Binomial[k-1, i-1]*Sum[u[k-i, j]*d^(i-1), {d, Divisors[j]}], {i, 1, k}]; a[n_] := Sum[EulerPhi[j]*u[n/j, j], {j, Divisors[n]}]/n; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 14 2012, after Franklin T. Adams-Watters *)
  • PARI
    U(k, j) = if(k==0,1,sum(i=1,k,binomial(k-1,i-1)*sumdiv(j,d,U(k-i,j) *d^(i-1)))) /* U is unoptimized; should remember previous values. */
    a(n) = sumdiv(n,j,eulerphi(j)*U(n\j,j))/n \\ Franklin T. Adams-Watters, Jun 09 2008
    
  • PARI
    seq(n)={Vec(1 + intformal(sum(m=1, n, eulerphi(m)*subst(serlaplace(-1 + exp(sumdiv(m, d, (exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))} \\ Andrew Howroyd, Sep 20 2019

Formula

a(p) = (Bell(p)+2*(p-1))/p for prime p; cf. A079609. - Vladeta Jovovic, Jul 04 2003
U(k,j) = 1 if k=0, else Sum_{i=1..k} C(k-1,i-1) Sum_{d|j} U(k-i,j)*d^{i-1}. Then a(n) = (Sum_{j|n} phi(j)*U(n/j,j))/n. (U(k,j) is the number of partitions invariant under a permutation with k cycles of j objects each.) - Franklin T. Adams-Watters, Jun 09 2008
a(n) = [n==0] + [n>0] * (1/n) * Sum_{d|n} phi(d) * A162663(n/d,d). - Robert A. Russell, Jun 10 2018
From Richard L. Ollerton, May 09 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} A162663(gcd(n,k),n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} A162663(n/gcd(n,k),gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

Extensions

More terms from Robert G. Wilson v, Jun 27 2003
More terms from Franklin T. Adams-Watters, Jun 09 2008