A084608 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+3*x^2)^n.
1, 1, 2, 3, 1, 4, 10, 12, 9, 1, 6, 21, 44, 63, 54, 27, 1, 8, 36, 104, 214, 312, 324, 216, 81, 1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243, 1, 12, 78, 340, 1095, 2712, 5284, 8136, 9855, 9180, 6318, 2916, 729, 1, 14, 105, 532, 2009, 5922, 13993, 26840, 41979
Offset: 0
Examples
Triangle begins: 1; 1, 2, 3; 1, 4, 10, 12, 9; 1, 6, 21, 44, 63, 54, 27; 1, 8, 36, 104, 214, 312, 324, 216, 81; 1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Crossrefs
Programs
-
Haskell
a084608 n = a084608_list !! n a084608_list = concat $ iterate ([1,2,3] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Magma
A084608:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*2^(k-2*j)*3^j: j in [0..k]]) >; [A084608(n,k): k in [0..2*n], n in [0..13]]; // G. C. Greubel, Mar 27 2023
-
Maple
f:= proc(n) option remember; expand((1+2*x+3*x^2)^n) end: T:= (n,k)-> coeff(f(n), x, k): seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 03 2011
-
Mathematica
row[n_] := (1+2x+3x^2)^n + O[x]^(2n+1) // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
-
PARI
for(n=0,10, for(k=0,2*n,t=polcoeff((1+2*x+3*x^2)^n,k,x); print1(t",")); print(" "))
-
SageMath
def A084608(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*2^(k-2*j)*3^j for j in range(k//2+1)) flatten([[A084608(n,k) for k in range(2*n+1)] for n in range(14)]) # G. C. Greubel, Mar 27 2023
Formula
From G. C. Greubel, Mar 27 2023: (Start)
T(n, k) = Sum_{j=0..k} binomial(n, k-j)*binomial(k-j, j)*2^(k-2*j)*3^j.
T(n, n) = A084609(n).
T(n, 2*n-1) = A212697(n), n >= 1.
T(n, 2*n) = A000244(n).
Sum_{j=0..2*n} T(n, k) = A000400(n).
Sum_{k=0..2*n} (-1)^k*T(n, k) = A000079(n).
Sum_{k=0..n} T(n-k, k) = A101822(n). (End)