cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084608 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+3*x^2)^n.

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 10, 12, 9, 1, 6, 21, 44, 63, 54, 27, 1, 8, 36, 104, 214, 312, 324, 216, 81, 1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243, 1, 12, 78, 340, 1095, 2712, 5284, 8136, 9855, 9180, 6318, 2916, 729, 1, 14, 105, 532, 2009, 5922, 13993, 26840, 41979
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Triangle begins:
  1;
  1,  2,  3;
  1,  4, 10,  12,   9;
  1,  6, 21,  44,  63,   54,   27;
  1,  8, 36, 104, 214,  312,  324,  216,   81;
  1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243;
		

Crossrefs

Programs

  • Haskell
    a084608 n = a084608_list !! n
    a084608_list = concat $ iterate ([1,2,3] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Magma
    A084608:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*2^(k-2*j)*3^j: j in [0..k]]) >;
    [A084608(n,k): k in [0..2*n], n in [0..13]]; // G. C. Greubel, Mar 27 2023
    
  • Maple
    f:= proc(n) option remember; expand((1+2*x+3*x^2)^n) end:
    T:= (n,k)-> coeff(f(n), x, k):
    seq(seq(T(n, k), k=0..2*n), n=0..10);  # Alois P. Heinz, Apr 03 2011
  • Mathematica
    row[n_] := (1+2x+3x^2)^n + O[x]^(2n+1) // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
  • PARI
    for(n=0,10, for(k=0,2*n,t=polcoeff((1+2*x+3*x^2)^n,k,x); print1(t",")); print(" "))
    
  • SageMath
    def A084608(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*2^(k-2*j)*3^j for j in range(k//2+1))
    flatten([[A084608(n,k) for k in range(2*n+1)] for n in range(14)]) # G. C. Greubel, Mar 27 2023

Formula

From G. C. Greubel, Mar 27 2023: (Start)
T(n, k) = Sum_{j=0..k} binomial(n, k-j)*binomial(k-j, j)*2^(k-2*j)*3^j.
T(n, n) = A084609(n).
T(n, 2*n-1) = A212697(n), n >= 1.
T(n, 2*n) = A000244(n).
Sum_{j=0..2*n} T(n, k) = A000400(n).
Sum_{k=0..2*n} (-1)^k*T(n, k) = A000079(n).
Sum_{k=0..n} T(n-k, k) = A101822(n). (End)