cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).

Original entry on oeis.org

1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398, 433, 470, 508, 548, 589, 632, 676, 722, 769, 818, 868, 920, 973, 1028, 1084, 1142, 1201, 1262, 1324, 1388, 1453, 1520, 1588, 1658, 1729, 1802, 1876, 1952, 2029, 2108, 2188, 2270, 2353, 2438, 2524, 2612, 2701, 2792, 2884, 2978, 3073, 3170, 3268, 3368, 3469, 3572
Offset: 0

Views

Author

N. J. A. Sloane, Jul 16 2003

Keywords

Comments

Number of binary strings of length n with no substrings equal to 0001, 1001, or 1011. - R. H. Hardin, Aug 14 2009
Degree sequence d(n) of recursion x(n+1)+x(n)+x(n-1) = b + c(n)/x(n) where c(n) = c(n-1) + c(n-2) - c(n-3) and x(n) = u(n)/f(n) and x(n-1) = v(n)/f(n) in homogeneous coordinates (projectivization). Denoted by sigma_1 on page 32 of Hiertarinta and Viallet (2000). - Michael Somos, Jan 04 2022

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
		

Crossrefs

Cf. A064863, A056107 (bisection), A077588 (bisection).
Cf. also A001651, A002620, A122958.

Programs

Formula

a(n) = (6*n^2 + 9 - (-1)^n)/8. - Charles R Greathouse IV, Sep 10 2014
G.f.: ( 1+2*x^3 ) / ( (1+x)*(1-x)^3 ). - R. J. Mathar, Sep 11 2014
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Sep 11 2014
a(n) = a(-n) for all n in Z. - Michael Somos, Feb 08 2015
a(n) - a(n-1) = A001651(n), a(n+1) - a(n-1) = 3*n for all n in Z. - Michael Somos, Feb 08 2015
(a(n) - a(n+1))^2 - (2*a(n) + a(n+1)) + 4 = 3*n/2 + 1 for all even n in Z. - Michael Somos, Feb 08 2015
0 = -4 + a(n)*(-a(n+1) + a(n+2)) + a(n+1)*(+3 + a(n+1) - a(n+2)) for all n in Z. - Michael Somos, Feb 08 2015
A122958(n-1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n for all n>1. - Michael Somos, Feb 08 2015
a(n) = 2*a(n-1) - 3*A002620(n-2) for all n in Z. - Michael Somos, Dec 27 2021
a(n) = 3*(a(n-1) + a(n-4)) - 2*(a(n-2) + a(n-3)) - a(n-5) for all n in Z. - Michael Somos, Jan 04 2022

Extensions

More terms from Charles R Greathouse IV, Sep 10 2014
Edited by N. J. A. Sloane, Jan 04 2022