A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).
1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398, 433, 470, 508, 548, 589, 632, 676, 722, 769, 818, 868, 920, 973, 1028, 1084, 1142, 1201, 1262, 1324, 1388, 1453, 1520, 1588, 1658, 1729, 1802, 1876, 1952, 2029, 2108, 2188, 2270, 2353, 2438, 2524, 2612, 2701, 2792, 2884, 2978, 3073, 3170, 3268, 3368, 3469, 3572
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Jarmo Hietarinta and Claude Viallet, Discrete Painlevé I and singularity confinement in projective space, Chaos, Solitons and Fractals 11 (2000), pp. 29-32.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Mathematica
a[ n_] := Quotient[ 3*n^2 + 6, 4]; (* Michael Somos, Feb 08 2015 *) LinearRecurrence[{2,0,-2,1},{1,2,4,8},70] (* Harvey P. Dale, Jul 21 2021 *)
-
PARI
a(n)=(6*n^2 + 9 - (-1)^n)/8 \\ Charles R Greathouse IV, Sep 10 2014
-
PARI
{a(n) = (n^2 + 2)*3 \ 4}; /* Michael Somos, Feb 08 2015 */
Formula
a(n) = (6*n^2 + 9 - (-1)^n)/8. - Charles R Greathouse IV, Sep 10 2014
G.f.: ( 1+2*x^3 ) / ( (1+x)*(1-x)^3 ). - R. J. Mathar, Sep 11 2014
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Sep 11 2014
a(n) = a(-n) for all n in Z. - Michael Somos, Feb 08 2015
a(n) - a(n-1) = A001651(n), a(n+1) - a(n-1) = 3*n for all n in Z. - Michael Somos, Feb 08 2015
(a(n) - a(n+1))^2 - (2*a(n) + a(n+1)) + 4 = 3*n/2 + 1 for all even n in Z. - Michael Somos, Feb 08 2015
0 = -4 + a(n)*(-a(n+1) + a(n+2)) + a(n+1)*(+3 + a(n+1) - a(n+2)) for all n in Z. - Michael Somos, Feb 08 2015
A122958(n-1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n for all n>1. - Michael Somos, Feb 08 2015
a(n) = 2*a(n-1) - 3*A002620(n-2) for all n in Z. - Michael Somos, Dec 27 2021
a(n) = 3*(a(n-1) + a(n-4)) - 2*(a(n-2) + a(n-3)) - a(n-5) for all n in Z. - Michael Somos, Jan 04 2022
Extensions
More terms from Charles R Greathouse IV, Sep 10 2014
Edited by N. J. A. Sloane, Jan 04 2022
Comments