cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084783 Triangle, read by rows, such that the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (A084786) gives the differences of the diagonal and the first column.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 25, 31, 39, 50, 66, 137, 162, 193, 232, 282, 348, 944, 1081, 1243, 1436, 1668, 1950, 2298, 7884, 8828, 9909, 11152, 12588, 14256, 16206, 18504, 77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Examples

			Triangle begins:
      1;
      1,     2;
      2,     3,     5;
      6,     8,    11,     16;
     25,    31,    39,     50,     66;
    137,   162,   193,    232,    282,    348;
    944,  1081,  1243,   1436,   1668,   1950,   2298;
   7884,  8828,  9909,  11152,  12588,  14256,  16206,  18504;
  77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841;
  ...
		

Crossrefs

Programs

  • Magma
    m:=50;
    f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);
    b:=Coefficients(R!( f(m,x) )); // b = A084784
    function T(n,k) // T = A084783
      if k eq 0 then return b[n+1];
      else return T(n,k-1) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 08 2023
    
  • Maple
    T:= proc(n, k) option remember; `if`(k=0, 1+add(T(j, 0)*
         (binomial(n, j)-T(n-j, 0)), j=1..n-1), T(n, k-1)+T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 09 2023
  • Mathematica
    b[n_]:= b[n]= If[n<1, Boole[n==0], Module[{A= 1/x -1/x^2}, Do[A=2A - Normal@Series[(x A^2)/. x-> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* b = A084784 *)
    T[n_, k_]:= T[n, k]= If[k==0, b[n], T[n, k-1] +T[n-1, k-1]];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2023 *)
  • PARI
    {A084784(n) = local(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x /(1 + x)) / (1 + x); ); polcoeff(A, n))}; /* After Michael Somos */
    {T(n,k)=if(k==0,if(n==0,1,A084784(n)),T(n, k-1)+T(n-1, k-1))}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • SageMath
    def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    m=50
    def A084784_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    b=A084784_list(m)
    def T(n,k): # T = A084783
        if k==0: return b[n]
        else: return T(n, k-1) + T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 08 2023

Formula

T(0,0) = 1, T(n,0) = A084784(n), T(n,n) = A084785(n), T(n,k) = T(n,k-1) + T(n-1,k-1) for n>0, k>0.