A084783 Triangle, read by rows, such that the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (A084786) gives the differences of the diagonal and the first column.
1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 25, 31, 39, 50, 66, 137, 162, 193, 232, 282, 348, 944, 1081, 1243, 1436, 1668, 1950, 2298, 7884, 8828, 9909, 11152, 12588, 14256, 16206, 18504, 77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841
Offset: 0
Examples
Triangle begins: 1; 1, 2; 2, 3, 5; 6, 8, 11, 16; 25, 31, 39, 50, 66; 137, 162, 193, 232, 282, 348; 944, 1081, 1243, 1436, 1668, 1950, 2298; 7884, 8828, 9909, 11152, 12588, 14256, 16206, 18504; 77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened (first 45 rows from Paul D. Hanna)
Programs
-
Magma
m:=50; f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >; R
:=PowerSeriesRing(Rationals(), m+1); b:=Coefficients(R!( f(m,x) )); // b = A084784 function T(n,k) // T = A084783 if k eq 0 then return b[n+1]; else return T(n,k-1) + T(n-1,k-1); end if; end function; [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 08 2023 -
Maple
T:= proc(n, k) option remember; `if`(k=0, 1+add(T(j, 0)* (binomial(n, j)-T(n-j, 0)), j=1..n-1), T(n, k-1)+T(n-1, k-1)) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 09 2023
-
Mathematica
b[n_]:= b[n]= If[n<1, Boole[n==0], Module[{A= 1/x -1/x^2}, Do[A=2A - Normal@Series[(x A^2)/. x-> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* b = A084784 *) T[n_, k_]:= T[n, k]= If[k==0, b[n], T[n, k-1] +T[n-1, k-1]]; Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2023 *)
-
PARI
{A084784(n) = local(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x /(1 + x)) / (1 + x); ); polcoeff(A, n))}; /* After Michael Somos */ {T(n,k)=if(k==0,if(n==0,1,A084784(n)),T(n, k-1)+T(n-1, k-1))} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
SageMath
def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2))) m=50 def A084784_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(m,x) ).list() b=A084784_list(m) def T(n,k): # T = A084783 if k==0: return b[n] else: return T(n, k-1) + T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 08 2023