A084784
Binomial transform = self-convolution: first column of the triangle (A084783).
Original entry on oeis.org
1, 1, 2, 6, 25, 137, 944, 7884, 77514, 877002, 11218428, 160010244, 2516742498, 43260962754, 806650405800, 16213824084864, 349441656710217, 8037981040874313, 196539809431339642, 5090276002949080318, 139202688233361310841, 4008133046329085884137
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + 944*x^6 + ...
where
A(x) = (1-x)^(-1/4)*(1-2*x)^(-1/8)*(1-3*x)^(-1/16)*(1-4*x)^(-1/32)*...
Also,
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 541*x^5/5 + 4683*x^6/6 + ... + A000670(n)*x^n/n + ...
thus, the logarithmic derivative equals the series:
A'(x)/A(x) = 1/(1-x) + 2!*x/((1-x)*(1-2*x)) + 3!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + ...
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 223.
-
m:=50;
f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A084784
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
a:= proc(n) option remember;
1+add(a(j)*(binomial(n,j)-a(n-j)), j=1..n-1)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 09 2023
-
a[ n_]:= If[n<1, Boole[n==0], Module[{A= 1/x - 1/x^2}, Do [A= 2 A - Normal @ Series[ (x A^2) /. x -> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* Michael Somos, Jun 20 2015 *)
nn=20;CoefficientList[Series[Exp[Sum[Times[1/k,i!,StirlingS2[k,i],x^k],{k,nn},{i,k}]],{x,0,nn}],x] (* Gus Wiseman, Oct 18 2016 *)
-
{a(n) = my(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x / (1 + x)) / (1 + x);); polcoeff(A, n))}; /* Michael Somos, Feb 18 2006 */
-
/* Using o.g.f. exp( Sum_{n>=1} A000670(n)*x^n/n ): */
{a(n) = polcoef(exp(intformal(sum(m=1, n+1, m!*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}
for(n=0,30,print1(a(n),", "))
-
# after Alois P. Heinz
from functools import cache
from math import comb as binomial
@cache
def a(n: int) -> int:
return 1 + sum((binomial(n, j) - a(n - j)) * a(j) for j in range(1, n))
print([a(n) for n in range(22)]) # Peter Luschny, Jun 09 2023
-
m=40
def f(n, x): return exp(sum(sum(factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A084784_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A084784_list(m) # G. C. Greubel, Jun 08 2023
A084785
Diagonal of the triangle (A084783) and the self-convolution of the first column (A084784).
Original entry on oeis.org
1, 2, 5, 16, 66, 348, 2298, 18504, 176841, 1958746, 24661493, 347548376, 5415830272, 92410046544, 1712819553864, 34258146124320, 735267392077962, 16852848083339700, 410809882438699346, 10611174406149372736, 289493459925589039804, 8317946739043065421640
Offset: 0
G.f.: A(x) = (1-x)^(-1/2)*(1-2*x)^(-1/4)*(1-3*x)^(-1/8)*(1-4*x)^(-1/16)*... - _Paul D. Hanna_, Jun 16 2010
- Vaclav Kotesovec, Table of n, a(n) for n = 0..350
- Chao-Ping Chen, Sharp inequalities and asymptotic series related to Somos' quadratic recurrence constant, Journal of Number Theory, 2016, Volume 172, March 2017, Pages 145-159.
- Olivier Golinelli, Remote control system of a binary tree of switches - II. balancing for a perfect binary tree, arXiv:2405.16968 [cs.DM], 2024. See p. 17.
-
m:=40;
f:= func< n,x | Exp((&+[(&+[(-2)^j*Factorial(j)*StirlingSecond(k,j)*(-x)^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A084785
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
nmax = 19; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[(1+x)^2 * A[x] - A[x/(1+x)]^2 + O[x]^(n+1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[(-2)^j*j!*StirlingS2[k, j], {j,k}]*(-x)^k /k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n=2, 25, sc = sum(i=2, n-1, A[i, 1]*A[n+1-i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k=2, n, A[n, k] = A[n, k-1] + A[n-1, k-1]; rs += A[n, k]); print(A[n, n])); \\ David Wasserman, Jan 06 2005
-
{a(n)=local(A); if(n<0, 0, A=1; for(k=1,n, A=truncate(A+O(x^k))+x*O(x^k); A+=A-(subst(1/A,x,x/(1+x))*(1+x))^-2;); polcoeff(A,n))} /* Michael Somos, Feb 18 2006 */
-
def f(n, x): return exp(sum(sum( (-2)^j*factorial(j)* stirling_number2(k,j)*(-x)^k/k for j in range(1,k+1)) for k in range(1,n+2)))
m=50
def A084785_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A084785_list(m-9) # G. C. Greubel, Jun 08 2023
A084786
Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).
Original entry on oeis.org
1, 3, 10, 41, 211, 1354, 10620, 99327, 1081744, 13443065, 187538132, 2899087774, 49149083790, 906169148064, 18044322039456, 385825735367745, 8814867042465387, 214270073007359704, 5520898403200292418, 150290771692227728963, 4309813692713979537503
Offset: 0
-
A084784= With[{m=60}, CoefficientList[Series[Exp[Sum[Sum[ j!*StirlingS2[k, j], {j, k}]*x^k /k , {k, m + 1}]], {x,0,m}], x]];
T[n_, k_]:= T[n, k]= If[k==0, A084784[[n+1]], T[n, k-1] + T[n-1, k-1]]; (* A084783 *)
A084786[n_]:= A084786[n]= Sum[T[n, k], {k,0,n}];
Table[A084786[n], {n,0,40}] (* G. C. Greubel, Jun 08 2023 *)
-
A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n = 2, 25, sc = sum (i = 2, n - 1, A[i, 1]*A[n + 1 - i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k = 2, n, A[n, k] = A[n, k - 1] + A[n - 1, k - 1]; rs += A[n, k]); print(rs)); \\ David Wasserman, Jan 06 2005
-
def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
m=50
def A084784_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
b=A084784_list(m)
@CachedFunction
def T(n,k): # T = A084783
if k==0: return b[n]
else: return T(n, k-1) + T(n-1, k-1)
def A084786(n): return sum(T(n, k) for k in range(n+1))
[A084786(n) for n in range(m-9)] # G. C. Greubel, Jun 08 2023
A258377
O.g.f. satisfies A^2(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) ).
Original entry on oeis.org
1, 3, 13, 79, 649, 6955, 93813, 1539991, 29884881, 669628819, 17005862301, 482399018527, 15108642099673, 517599894435643, 19247498583665029, 771922934908235751, 33206411983713679009, 1525025984109289947171, 74466779211331635306029, 3852255519421356879419631
Offset: 0
Cf.
A019538,
A080253,
A084784,
A084785,
A090351,
A090352,
A090353,
A090355,
A090356,
A090357,
A090358,
A090362,
A145901,
A258378 (N = 2),
A258379 (N = 3),
A258380 (N = 4),
A258381 (N = 5).
-
#A258377
with(combinat):
#recursively define row polynomials R(n,x) of A145901
R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc:
#define a family of sequences depending on an integer parameter k
a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc:
# display the case k = 1
seq(a(n,1), n = 0..19);
-
R[n_, x_] := R[n, x] = If[n==0, 1, 1+x*Sum[Binomial[n, i]*2^(n-i)*R[i, x], {i, 0, n-1}]];
a[n_, k_] := a[n, k] = If[n==0, 1, 1/n*Sum[R[i+1, k]*a[n-1-i, k], {i, 0, n-1}]];
a[n_] := a[n, 1];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 02 2019 *)
Showing 1-4 of 4 results.
Comments