cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A084785 Diagonal of the triangle (A084783) and the self-convolution of the first column (A084784).

Original entry on oeis.org

1, 2, 5, 16, 66, 348, 2298, 18504, 176841, 1958746, 24661493, 347548376, 5415830272, 92410046544, 1712819553864, 34258146124320, 735267392077962, 16852848083339700, 410809882438699346, 10611174406149372736, 289493459925589039804, 8317946739043065421640
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Comments

In the triangle (A084783), the diagonal (this sequence) is the self-convolution of the first column (A084784) and the row sums (A084786) gives the differences of the diagonal and the first column.

Examples

			G.f.: A(x) = (1-x)^(-1/2)*(1-2*x)^(-1/4)*(1-3*x)^(-1/8)*(1-4*x)^(-1/16)*... - _Paul D. Hanna_, Jun 16 2010
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[(-2)^j*Factorial(j)*StirlingSecond(k,j)*(-x)^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);  // A084785
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
    
  • Mathematica
    nmax = 19; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[(1+x)^2 * A[x] - A[x/(1+x)]^2 + O[x]^(n+1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[(-2)^j*j!*StirlingS2[k, j], {j,k}]*(-x)^k /k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n=2, 25, sc = sum(i=2, n-1, A[i, 1]*A[n+1-i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k=2, n, A[n, k] = A[n, k-1] + A[n-1, k-1]; rs += A[n, k]); print(A[n, n])); \\ David Wasserman, Jan 06 2005
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1; for(k=1,n, A=truncate(A+O(x^k))+x*O(x^k); A+=A-(subst(1/A,x,x/(1+x))*(1+x))^-2;); polcoeff(A,n))} /* Michael Somos, Feb 18 2006 */
    
  • SageMath
    def f(n, x): return exp(sum(sum( (-2)^j*factorial(j)* stirling_number2(k,j)*(-x)^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    m=50
    def A084785_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A084785_list(m-9) # G. C. Greubel, Jun 08 2023

Formula

G.f. A(x) satisfies (1+x)^2 = A(x/(1+x))^2/A(x). - Michael Somos, Feb 16 2006
G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^n). - Paul D. Hanna, Jun 16 2010
a(n) ~ (n-1)! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 19 2014
From Peter Bala, May 26 2001: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-2)^k = A000629(n) = 2*A000670(n) for n >= 1. Cf. A090352.
sqrt(A(x)) = 1/(1 + x)*A(x/(1 + x)) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + ... is the o.g.f. for A084784. See also A019538. (End)

Extensions

More terms from David Wasserman, Jan 06 2005

A084783 Triangle, read by rows, such that the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (A084786) gives the differences of the diagonal and the first column.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 25, 31, 39, 50, 66, 137, 162, 193, 232, 282, 348, 944, 1081, 1243, 1436, 1668, 1950, 2298, 7884, 8828, 9909, 11152, 12588, 14256, 16206, 18504, 77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Examples

			Triangle begins:
      1;
      1,     2;
      2,     3,     5;
      6,     8,    11,     16;
     25,    31,    39,     50,     66;
    137,   162,   193,    232,    282,    348;
    944,  1081,  1243,   1436,   1668,   1950,   2298;
   7884,  8828,  9909,  11152,  12588,  14256,  16206,  18504;
  77514, 85398, 94226, 104135, 115287, 127875, 142131, 158337, 176841;
  ...
		

Crossrefs

Programs

  • Magma
    m:=50;
    f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);
    b:=Coefficients(R!( f(m,x) )); // b = A084784
    function T(n,k) // T = A084783
      if k eq 0 then return b[n+1];
      else return T(n,k-1) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 08 2023
    
  • Maple
    T:= proc(n, k) option remember; `if`(k=0, 1+add(T(j, 0)*
         (binomial(n, j)-T(n-j, 0)), j=1..n-1), T(n, k-1)+T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 09 2023
  • Mathematica
    b[n_]:= b[n]= If[n<1, Boole[n==0], Module[{A= 1/x -1/x^2}, Do[A=2A - Normal@Series[(x A^2)/. x-> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* b = A084784 *)
    T[n_, k_]:= T[n, k]= If[k==0, b[n], T[n, k-1] +T[n-1, k-1]];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2023 *)
  • PARI
    {A084784(n) = local(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x /(1 + x)) / (1 + x); ); polcoeff(A, n))}; /* After Michael Somos */
    {T(n,k)=if(k==0,if(n==0,1,A084784(n)),T(n, k-1)+T(n-1, k-1))}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • SageMath
    def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    m=50
    def A084784_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    b=A084784_list(m)
    def T(n,k): # T = A084783
        if k==0: return b[n]
        else: return T(n, k-1) + T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 08 2023

Formula

T(0,0) = 1, T(n,0) = A084784(n), T(n,n) = A084785(n), T(n,k) = T(n,k-1) + T(n-1,k-1) for n>0, k>0.

A084786 Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).

Original entry on oeis.org

1, 3, 10, 41, 211, 1354, 10620, 99327, 1081744, 13443065, 187538132, 2899087774, 49149083790, 906169148064, 18044322039456, 385825735367745, 8814867042465387, 214270073007359704, 5520898403200292418, 150290771692227728963, 4309813692713979537503
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Comments

In the triangle (A084783), the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (this sequence) gives the differences of the diagonal and the first column.

Crossrefs

Programs

  • Mathematica
    A084784= With[{m=60}, CoefficientList[Series[Exp[Sum[Sum[ j!*StirlingS2[k, j], {j, k}]*x^k /k , {k, m + 1}]], {x,0,m}], x]];
    T[n_, k_]:= T[n, k]= If[k==0, A084784[[n+1]], T[n, k-1] + T[n-1, k-1]]; (* A084783 *)
    A084786[n_]:= A084786[n]= Sum[T[n, k], {k,0,n}];
    Table[A084786[n], {n,0,40}] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n = 2, 25, sc = sum (i = 2, n - 1, A[i, 1]*A[n + 1 - i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k = 2, n, A[n, k] = A[n, k - 1] + A[n - 1, k - 1]; rs += A[n, k]); print(rs)); \\ David Wasserman, Jan 06 2005
    
  • SageMath
    def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    m=50
    def A084784_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    b=A084784_list(m)
    @CachedFunction
    def T(n,k): # T = A084783
        if k==0: return b[n]
        else: return T(n, k-1) + T(n-1, k-1)
    def A084786(n): return sum(T(n, k) for k in range(n+1))
    [A084786(n) for n in range(m-9)] # G. C. Greubel, Jun 08 2023

Formula

a(n) ~ n! / (2 * (log(2))^(n+2)). - Vaclav Kotesovec, Nov 19 2014

Extensions

More terms from David Wasserman, Jan 06 2005

A019538 Triangle of numbers T(n,k) = k!*Stirling2(n,k) read by rows (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 14, 36, 24, 1, 30, 150, 240, 120, 1, 62, 540, 1560, 1800, 720, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880, 1, 1022, 55980, 818520, 5103000, 16435440, 29635200, 30240000, 16329600, 3628800
Offset: 1

Views

Author

N. J. A. Sloane and Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de), Dec 11 1996

Keywords

Comments

Number of ways n labeled objects can be distributed into k nonempty parcels. Also number of special terms in n variables with maximal degree k.
In older terminology these are called differences of 0. - Michael Somos, Oct 08 2003
Number of surjections (onto functions) from an n-element set to a k-element set.
Also coefficients (in ascending order) of so-called ordered Bell polynomials.
(k-1)!*Stirling2(n,k-1) is the number of chain topologies on an n-set having k open sets [Stephen].
Number of set compositions (ordered set partitions) of n items into k parts. Number of k dimensional 'faces' of the n dimensional permutohedron (see Simion, p. 162). - Mitch Harris, Jan 16 2007
Correction of comment before: Number of (n-k)-dimensional 'faces' of the permutohedron of order n (an (n-1)-dimensional polytope). - Tilman Piesk, Oct 29 2014
This array is related to the reciprocal of an e.g.f. as sketched in A133314. For example, the coefficient of the fourth-order term in the Taylor series expansion of 1/(a(0) + a(1) x + a(2) x^2/2! + a(3) x^3/3! + ...) is a(0)^(-5) * {24 a(1)^4 - 36 a(1)^2 a(2) a(0) + [8 a(1) a(3) + 6 a(2)^2] a(0)^2 - a(4) a(0)^3}. The unsigned coefficients characterize the P3 permutohedron depicted on page 10 in the Loday link with 24 vertices (0-D faces), 36 edges (1-D faces), 6 squares (2-D faces), 8 hexagons (2-D faces) and 1 3-D permutohedron. Summing coefficients over like dimensions gives A019538 and A090582. Compare to A133437 for the associahedron. - Tom Copeland, Sep 29 2008, Oct 07 2008
Further to the comments of Tom Copeland above, the permutohedron of type A_3 can be taken as the truncated octahedron. Its dual is the tetrakis hexahedron, a simplicial polyhedron, with f-vector (1,14,36,24) giving the fourth row of this triangle. See the Wikipedia entry and [Fomin and Reading p. 21]. The corresponding h-vectors of permutohedra of type A give the rows of the triangle of Eulerian numbers A008292. See A145901 and A145902 for the array of f-vectors for type B and type D permutohedra respectively. - Peter Bala, Oct 26 2008
Subtriangle of triangle in A131689. - Philippe Deléham, Nov 03 2008
Since T(n,k) counts surjective functions and surjective functions are "consistent", T(n,k) satisfies a binomial identity, namely, T(n,x+y) = Sum_{j=0..n} C(n,j)*T(j,x)*T(n-j,y). For definition of consistent functions and a generalized binomial identity, see "Toy stories and combinatorial identities" in the link section below. - Dennis P. Walsh, Feb 24 2012
T(n,k) is the number of labeled forests on n+k vertices satisfying the following two conditions: (i) each forest consists of exactly k rooted trees with roots labeled 1, 2, ..., k; (ii) every root has at least one child vertex. - Dennis P. Walsh, Feb 24 2012
The triangle is the inverse binomial transform of triangle A028246, deleting the left column and shifting up one row. - Gary W. Adamson, Mar 05 2012
See A074909 for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
E.g.f. for the shifted signed polynomials is G(x,t) = (e^t-1)/[1+(1+x)(e^t-1)] = 1-(1+x)(e^t-1) + (1+x)^2(e^t-1)^2 - ... (see also A008292 and A074909), which has the infinitesimal generator g(x,u)d/du = [(1-x*u)(1-(1+x)u)]d/du, i.e., exp[t*g(x,u)d/du]u eval. at u=0 gives G(x,t), and dG(x,t)/dt = g(x,G(x,t)). The compositional inverse is log((1-xt)/(1-(1+x)t)). G(x,t) is a generating series associated to the generalized Hirzebruch genera. See the G. Rzadowski link for the relation of the derivatives of g(x,u) to solutions of the Riccatt differential equation, soliton solns. to the KdV equation, and the Eulerian and Bernoulli numbers. In addition A145271 connects products of derivatives of g(x,u) and the refined Eulerian numbers to the inverse of G(x,t), which gives the normalized, reverse face polynomials of the simplices (A135278, divided by n+1). See A028246 for the generator g(x,u)d/dx. - Tom Copeland, Nov 21 2014
For connections to toric varieties and Eulerian polynomials, see the Dolgachev and Lunts and the Stembridge links. - Tom Copeland, Dec 31 2015
See A008279 for a relation between the e.g.f.s enumerating the faces of permutahedra (this entry) and stellahedra. - Tom Copeland, Nov 14 2016
T(n, k) appears in a Worpitzky identity relating monomials to binomials: x^n = Sum_{k=1..n} T(n, k)*binomial(x,k), n >= 1. See eq. (11.) of the Worpitzky link on p. 209. The relation to the Eulerian numbers is given there in eqs. (14.) and (15.). See the formula below relating to A008292. See also Graham et al. eq. (6.10) (relating monomials to falling factorials) on p. 248 (2nd ed. p. 262). The Worpitzky identity given in the Graham et al. reference as eq. (6.37) (2nd ed. p. 269) is eq. (5.), p. 207, of Worpitzky. - Wolfdieter Lang, Mar 10 2017
T(n, m) is also the number of minimum clique coverings and minimum matchings in the complete bipartite graph K_{m,n}. - Eric W. Weisstein, Apr 26 2017
From the Hasan and Franco and Hasan papers: The m-permutohedra for m=1,2,3,4 are the line segment, hexagon, truncated octahedron and omnitruncated 5-cell. The first three are well-known from the study of elliptic models, brane tilings and brane brick models. The m+1 torus can be tiled by a single (m+2)-permutohedron. Relations to toric Calabi-Yau Kahler manifolds are also discussed. - Tom Copeland, May 14 2020
From Manfred Boergens, Jul 25 2021: (Start)
Number of n X k binary matrices with row sums = 1 and no zero columns. These matrices are a subset of the matrices defining A183109.
The distribution into parcels in the leading comment can be regarded as a covering of [n] by tuples (A_1,...,A_k) in P([n])^k with nonempty and disjoint A_j, with P(.) denoting the power set (corrected for clarity by Manfred Boergens, May 26 2024). For the non-disjoint case see A183109 and A218695.
For tuples with "nonempty" dropped see A089072. For tuples with "nonempty and disjoint" dropped see A092477 and A329943 (amendment by Manfred Boergens, Jun 24 2024). (End)

Examples

			The triangle T(n, k) begins:
  n\k 1    2     3      4       5        6        7        8        9      10
  1:  1
  2:  1    2
  3:  1    6     6
  4:  1   14    36     24
  5:  1   30   150    240     120
  6:  1   62   540   1560    1800      720
  7:  1  126  1806   8400   16800    15120     5040
  8:  1  254  5796  40824  126000   191520   141120    40320
  9:  1  510 18150 186480  834120  1905120  2328480  1451520   362880
  10: 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
  ... Reformatted and extended - _Wolfdieter Lang_, Oct 04 2014
---------------------------------------------------------------------------
T(4,1) = 1: {1234}. T(4,2) = 14: {1}{234} (4 ways), {12}{34} (6 ways), {123}{4} (4 ways). T(4,3) = 36: {12}{3}{4} (12 ways), {1}{23}{4} (12 ways), {1}{2}{34} (12 ways). T(4,4) = 1: {1}{2}{3}{4} (1 way).
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 89, ex. 1; also p. 210.
  • Miklos Bona, Combinatorics of Permutations, Chapman and Hall,2004, p.12.
  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover Publications, 1960, p. 20.
  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, 1989, p. 155. Also eqs.(6.10) and (6.37).
  • Kiran S. Kedlaya and Andrew V. Sutherland, Computing L -Series of Hyperelliptic Curves in Algorithmic Number Theory Lecture Notes in Computer Science Volume 5011/2008.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.6.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
  • E. Whittaker and G. Robinson, The Calculus of Observations, Blackie, London, 4th ed., 1949; p. 7.

Crossrefs

Row sums give A000670. Maximal terms in rows give A002869. Central terms T(2k-1,k) give A233734.
Diagonal is n! (A000142). 2nd diagonal is A001286. 3rd diagonal is A037960.
Reflected version of A090582. A371568 is another version.
See also the two closely related triangles: A008277(n, k) = T(n, k)/k! (Stirling numbers of second kind) and A028246(n, k) = T(n, k)/k.
Cf. A033282 'faces' of the associahedron.
Cf. A008292, A047969, A145901, A145902. - Peter Bala, Oct 26 2008
Visible in the 3-D array in A249042.
See also A000182.

Programs

  • Haskell
    a019538 n k = a019538_tabl !! (n-1) !! (k-1)
    a019538_row n = a019538_tabl !! (n-1)
    a019538_tabl = iterate f [1] where
       f xs = zipWith (*) [1..] $ zipWith (+) ([0] ++ xs) (xs ++ [0])
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    with(combinat): A019538 := (n,k)->k!*stirling2(n,k);
  • Mathematica
    Table[k! StirlingS2[n, k], {n, 9}, {k, n}] // Flatten
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, sum(i=0, k, (-1)^i * binomial(k, i) * (k-i)^n))}; /* Michael Somos, Oct 08 2003 */
    
  • Sage
    def T(n, k): return factorial(k)*stirling_number2(n,k) # Danny Rorabaugh, Oct 10 2015

Formula

T(n, k) = k*(T(n-1, k-1)+T(n-1, k)) with T(0, 0) = 1 [or T(1, 1) = 1]. - Henry Bottomley, Mar 02 2001
E.g.f.: (y*(exp(x)-1) - exp(x))/(y*(exp(x)-1) - 1). - Vladeta Jovovic, Jan 30 2003
Equals [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*j^n*binomial(k, j). - Mario Catalani (mario.catalani(AT)unito.it), Nov 28 2003. See Graham et al., eq. (6.19), p. 251. For a proof see Bert Seghers, Jun 29 2013.
Sum_{k=0..n} T(n, k)(-1)^(n-k) = 1, Sum_{k=0..n} T(n, k)(-1)^k = (-1)^n. - Mario Catalani (mario.catalani(AT)unito.it), Dec 11 2003
O.g.f. for n-th row: polylog(-n, x/(1+x))/(x+x^2). - Vladeta Jovovic, Jan 30 2005
E.g.f.: 1 / (1 + t*(1-exp(x))). - Tom Copeland, Oct 13 2008
From Peter Bala, Oct 26 2008: (Start)
O.g.f. as a continued fraction: 1/(1 - x*t/(1 - (x + 1)*t/(1 - 2*x*t/(1 - 2*(x + 1)*t/(1 - ...))))) = 1 + x*t + (x + 2*x^2)*t^2 + (x + 6*x^2 + 6*x^3)*t^3 + ... .
The row polynomials R(n,x), which begin R(1,x) = x, R(2,x) = x + 2*x^2, R(3,x) = x + 6*x^2 + 6*x^3, satisfy the recurrence x*d/dx ((x + 1)*R(n,x)) = R(n+1,x). It follows that the zeros of R(n,x) are real and negative (apply Corollary 1.2 of [Liu and Wang]).
Since this is the triangle of f-vectors of the (simplicial complexes dual to the) type A permutohedra, whose h-vectors form the Eulerian number triangle A008292, the coefficients of the polynomial (x-1)^n*R(n,1/(x-1)) give the n-th row of A008292. For example, from row 3 we have x^2 + 6*x + 6 = 1 + 4*y + y^2, where y = x + 1, producing [1,4,1] as the third row of A008292. The matrix product A008292 * A007318 gives the mirror image of this triangle (see A090582).
For n,k >= 0, T(n+1,k+1) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*[(j+1)^(n+1) - j^(n+1)]. The matrix product of Pascal's triangle A007318 with the current array gives (essentially) A047969. This triangle is also related to triangle A047969 by means of the S-transform of [Hetyei], a linear transformation of polynomials whose value on the basis monomials x^k is given by S(x^k) = binomial(x,k). The S-transform of the shifted n-th row polynomial Q(n,x) := R(n,x)/x is S(Q(n,x)) = (x+1)^n - x^n. For example, from row 3 we obtain S(1 + 6*x + 6*x^2) = 1 + 6*x + 6*x*(x-1)/2 = 1 + 3*x + 3*x^2 = (x+1)^3 - x^3. For fixed k, the values S(Q(n,k)) give the nonzero entries in column (k-1) of the triangle A047969 (the Hilbert transform of the Eulerian numbers). (End)
E.g.f.: (exp(x)-1)^k = sum T(n,k)x^n/n!. - Vladimir Kruchinin, Aug 10 2010
T(n,k) = Sum_{i=1..k} A(n,i)*Binomial(n-i,k-i) where A(n,i) is the number of n-permutations that have i ascending runs, A008292.
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f. A(x,t) = -1 + 1/(1+t*(1-exp(x))), the comp. inverse in x is B(x,t) = log(((1+t)/t) - 1/(t(1+x))).
With h(x,t) = 1/(dB/dx)= (1+x)((1+t)(1+x)-1), the row polynomial P(n,t) is given by (h(x,t)*d/dx)^n x, eval. at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(0,t)=0.
(A factor of -1/n! was removed by Copeland on Aug 25 2016.) (End)
The term linear in x of [x*h(d/dx,t)]^n 1 gives the n-th row polynomial. (See A134685.) - Tom Copeland, Nov 07 2011
Row polynomials are given by D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator (1+x)*d/dx. - Peter Bala, Nov 25 2011
T(n,x+y) = Sum_{j=0..n} binomial(n,j)*T(j,x)*T(n-j,y). - Dennis P. Walsh, Feb 24 2012
Let P be a Rota-Baxter operator of weight 1 satisfying the identity P(x)*P(y) = P(P(x)*y) + P(x*P(y)) + P(x*y). Then P(1)^2 = P(1) + 2*P^2(1). More generally, Guo shows that P(1)^n = Sum_{k=1..n} T(n,k)*P^k(1). - Peter Bala, Jun 08 2012
Sum_{i=1..n} (-1)^i*T(n,i)/i = 0, for n > 1. - Leonid Bedratyuk, Aug 09 2012
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(k, j)*(k-j)^n. [M. Catalani's re-indexed formula from Nov 28 2003] Proof: count the surjections of [n] onto [k] with the inclusion-exclusion principle, as an alternating sum of the number of functions from [n] to [k-j]. - Bert Seghers, Jun 29 2013
n-th row polynomial = 1/(1 + x)*( Sum_{k>=0} k^n*(x/(1 + x))^k ), valid for x in the open interval (-1/2, inf). See Tanny link. Cf. A145901. - Peter Bala, Jul 22 2014
T(n,k) = k * A141618(n,k-1) / binomial(n,k-1). - Tom Copeland, Oct 25 2014
Sum_{n>=0} n^k*a^n = Sum_{i=1..k} (a / (1 - a))^i * T(k, i)/(1-a) for |a| < 1. - David A. Corneth, Mar 09 2015
From Peter Bala, May 26 2015: (Start)
The row polynomials R(n,x) satisfy (1 + x)*R(n,x) = (-1)^n*x*R(n,-(1 + x)).
For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = BINOMIAL(A(k,z))^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). Cf. A145901. For cases see A084784 (k = 1), A090352 (k = 2), A090355 (k = 3), A090357 (k = 4), A090362 (k = 5) and A084785 (k = -2 with z -> -z).
A(k,z)^(k + 1) = A(-(k + 1),-z)^k and hence BINOMIAL(A(k,z)) = A(-(k + 1),-z). (End)
From Tom Copeland, Oct 19 2016: (Start)
Let a(1) = 1 + x + B(1) = x + 1/2 and a(n) = B(n) = (B.)^n, where B(n) are the Bernoulli numbers defined by e^(B.t) = t / (e^t-1), then t / e^(a.t) = t / [(x + 1) * t + exp(B.t)] = (e^t - 1) /[ 1 + (x + 1) (e^t - 1)] = exp(p.(x)t), where (p.(x))^n = p_n(x) are the shifted, signed row polynomials of this array: p_0(x) = 0, p_1(x) = 1, p_2(x) = -(1 + 2 x), p_3(x) = 1 + 6 x + 6 x^2, ... and p_n(x) = n * b(n-1), where b(n) are the partition polynomials of A133314 evaluated with these a(n).
Sum_{n > 0} R(n,-1/2) x^n/n! = 2 * tanh(x/2), where R(n,x) = Sum_{k = 1..n} T(n,k) x^(k-1) are the shifted row polynomials of this entry, so R(n,-1/2) = 4 * (2^(n+1)-1) B(n+1)/(n+1). (Cf. A000182.)
(End)
Also the Bernoulli numbers are given by B(n) = Sum_{k =1..n} (-1)^k T(n,k) / (k+1). - Tom Copeland, Nov 06 2016
G.f. for column k: k! x^k / Product_{i=1..k} (1-i*x). - Robert A. Russell, Sep 25 2018
a(j) <= A183109(j). - Manfred Boergens, Jul 25 2021

A090351 G.f. satisfies A^3 = BINOMIAL(A^2).

Original entry on oeis.org

1, 1, 3, 15, 108, 1032, 12388, 179572, 3052986, 59555338, 1310677726, 32114051862, 866766965308, 25547102523604, 816335926158372, 28107705687291892, 1037367351120788551, 40852168787823027351, 1709792654612819858341
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			A^3 = BINOMIAL(A090352), since A090352=A^2.
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[2^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);  // A090351
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
    
  • Mathematica
    nmax = 18; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[2^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    {a(n) = my(A); if(n<0,0,A = 1+x +x*O(x^n); for(k=1,n, B = subst(A^2,x,x/(1-x))/(1-x) +x*O(x^n); A = A - A^3 + B); polcoef(A,n,x))}
    for(n=0,25,print1(a(n),", "))
    
  • SageMath
    m=50
    def f(n, x): return exp(sum(sum(2^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090351_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090351_list(m-9) # G. C. Greubel, Jun 08 2023

Formula

G.f. satisfies: A(x)^3 = A(x/(1-x))^2 / (1-x).
a(n) ~ (n-1)! / (6 * (log(3/2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*2^(k-1) = A050351(n) = 1/2*A004123(n+1) for n >= 1. - Peter Bala, May 26 2015
G.f. satisfies [x^n] 1/A(x)^(2*n-2) = [x^n] 1/A(x)^(3*n-3) = -(n-1)*A088222(n) for n >= 0. - Paul D. Hanna, Apr 28 2025
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/6) * (2/3)^k). - Seiichi Manyama, May 26 2025

A090358 G.f. satisfies A^6 = BINOMIAL(A^5).

Original entry on oeis.org

1, 1, 6, 66, 1071, 23151, 627236, 20452976, 779947641, 34050858041, 1674497370602, 91575747294582, 5512402585832847, 362148111801511407, 25783279860096503952, 1977349647140061768364, 162508269041154881377519
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.
In general, if g.f. satisfies A(x)^(k+1) = A(x/(1-x))^k / (1-x), k>0, then a(n) ~ (n-1)! / (k*(k+1) * (log((k+1)/k))^(n+1)). - Vaclav Kotesovec, Nov 19 2014

Examples

			A^6 = BINOMIAL(A090362), since A090362=A^5. Also,
BINOMIAL(A) = A090359^2 since 2=gcd(1+1,6),
BINOMIAL(A^2) = A090360^3 since 3=gcd(2+1,6) and
BINOMIAL(A^3) = A090361^2 since 2=gcd(3+1,6).
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[5^(j-1)*Factorial(j)*StirlingSecond(k,j) *x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A090358
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
    
  • Mathematica
    nmax = 16; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^6 - A[x/(1 - x)]^5/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[5^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^5,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B);polcoeff(A,n,x))}
    
  • SageMath
    m=50
    def f(n, x): return exp(sum(sum( 5^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090358_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090358_list(m-5) # G. C. Greubel, Jun 08 2023

Formula

G.f. satisfies: A(x)^6 = A(x/(1-x))^5/(1-x).
a(n) ~ (n-1)! / (30 * (log(6/5))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*5^(k-1) = 1/5*A094418(n) for n >= 1. - Peter Bala, May 26 2015
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/30) * (5/6)^k). - Seiichi Manyama, May 26 2025

A090353 G.f. satisfies A^4 = BINOMIAL(A^3).

Original entry on oeis.org

1, 1, 4, 28, 286, 3886, 66260, 1361972, 32784353, 904412593, 28124223808, 973106096392, 37073604836768, 1541948625066176, 69513081435903392, 3376138396206853792, 175739519606046355540, 9760024269508314079444
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			A^4 = BINOMIAL(A090355), since A090355=A^3. Also, BINOMIAL(A) = A090354^2.
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[3^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A090353
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
    
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^4 - A[x/(1 - x)]^3/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[3^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
  • PARI
    {a(n) = my(A); if(n<0,0,A=1+x +x*O(x^n); for(k=1,n, B = subst(A^3,x,x/(1-x))/(1-x)+x*O(x^n); A = A - A^4 + B); polcoef(A,n,x))}
    for(n=0,20,print1(a(n),", "))
    
  • SageMath
    m=50
    def f(n, x): return exp(sum(sum(3^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090353_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090353_list(m-9) # G. C. Greubel, Jun 09 2023

Formula

G.f. satisfies: A(x)^4 = A(x/(1-x))^3/(1-x).
a(n) ~ (n-1)! / (12 * (log(4/3))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*3^(k-1) = A050352(n) = 1/3*A032033(n) for n >= 1. - Peter Bala, May 26 2015
G.f. satisfies [x^n] 1/A(x)^(3*n-3) = [x^n] 1/A(x)^(4*n-4) for n >= 0. - Paul D. Hanna, Apr 28 2025
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/12) * (3/4)^k). - Seiichi Manyama, May 26 2025

A090356 G.f. A(x) satisfies A(x)^5 = BINOMIAL(A(x)^4); that is, the binomial transform of the coefficients in A(x)^4 yields the coefficients in A(x)^5.

Original entry on oeis.org

1, 1, 5, 45, 595, 10475, 231255, 6148495, 191276600, 6815243040, 273601200136, 12217471594856, 600580173151560, 32224787998758280, 1873909224391774760, 117388347849375956328, 7880739469498103077588, 564440024187816634143380
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 595*x^4 + 10475*x^5 + 231255*x^6 + ...
The coefficients in A(x)^4 are given by A090357 and begin
A(x)^4: [1, 4, 26, 244, 3131, 52600, 1111940, ..., A090357(n), ...].
The binomial transform of A090357 yields the coefficients of A(x)^5:
A(x)^5: [1, 5, 35, 335, 4280, 70976, 1479800, ...]
as shown by
1 = 1*1,
5 = 1*1 + 1*4,
35 = 1*1 + 2*4 + 1*26,
335 = 1*1 + 3*4 + 3*26 + 1*244,
4280 = 1*1 + 4*4 + 6*26 + 4*244 + 1*3131, ...
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< n,x | Exp((&+[(&+[4^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1); // A090356
    Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
    
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
    With[{m = 40}, CoefficientList[Series[Exp[Sum[Sum[4^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^4,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B);polcoeff(A,n,x))}
    
  • SageMath
    m=40
    def f(n, x): return exp(sum(sum(4^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    def A090356_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    A090356_list(m) # G. C. Greubel, Jun 09 2023

Formula

G.f. satisfies: A(x)^5 = A(x/(1-x))^4/(1-x).
a(n) ~ (n-1)! / (20 * (log(5/4))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*4^(k-1) = A050353(n) = 1/4*A094417(n) for n >= 1. - Peter Bala, May 26 2015
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/20) * (4/5)^k). - Seiichi Manyama, May 26 2025

A258377 O.g.f. satisfies A^2(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) ).

Original entry on oeis.org

1, 3, 13, 79, 649, 6955, 93813, 1539991, 29884881, 669628819, 17005862301, 482399018527, 15108642099673, 517599894435643, 19247498583665029, 771922934908235751, 33206411983713679009, 1525025984109289947171, 74466779211331635306029, 3852255519421356879419631
Offset: 0

Views

Author

Peter Bala, May 28 2015

Keywords

Comments

For a fixed integer N, Hanna has considered the problem of finding an o.g.f. of the form A(z) = 1 + N*z + a(2)*z^2 + a(3)*z^3 + ..., with integer coefficients a(2), a(3), ... dependent on the parameter N, which is a solution to the functional equation A^(N+1) = ( BINOMIAL(A) )^N. Here BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z).
The function A(z) is related to the triangle of ordered Stirling numbers A019538 via logarithmic differentiation. It can be shown that z*A'(z)/A(z) = Sum_{k >= 1} R(k,N)*z^k, where R(k,x) denotes the k-th row polynomial of A019538; equivalently, A(z) = exp( Sum_{k >= 1} R(k,N)*z^k/k ).
Cases include A084784 (N = 1), A090352 (N = 2), A090355 (N = 3), A090357 (N = 4), A090362 (N = 5) and a signed version of A084785 (N = -2).
It turns out that the o.g.f. B(z) := A(z)^(1/N) also has integer coefficients. It satisfies the functional equation B^(N+1) = BINOMIAL(B^N). For cases see A084784 (N = 1), A090351 (N = 2), A090353 (N = 3), A090356 (N = 4), A090358 (N = 5) and A084784 (N = -2).
There are similar results to the above associated with triangle A145901, which can be viewed as a type B analog of A019538.
For a fixed integer N, consider the problem of finding an o.g.f. with integer coefficients (depending on the parameter N) of the form A(z) = 1 + N*z + a(2)*z^2 + a(3)*z^3 + ..., which is a solution to the functional equation A^(N+1)(z) = 1/(1 - z) * ( BINOMIAL(BINOMIAL(A(z))) )^N; equivalently A^(N+1)(z) = 1/(1 - z)* 1/(1 - 2*z)^N*A^N(z/(1 - 2*z)). This is the type B analog of Hanna's type A functional equation above.
It can be shown that z*A'(z)/A(z) = Sum_{k >= 1} P(k,N)*z^k, where P(k,x) denotes the k-th row polynomial of A145901. However, unlike the type A situation, the type B function A(z)^(1/N) does not have all integer coefficients.
The present sequence is the case N = 1. For further examples of solutions to the type B functional equation see A258378 (N = 2), A258379 (N = 3), A258380 (N = 4) and A258381 (N = 5).
From Peter Bala, Dec 06 2017: (Start)
a(n) appears to be always odd. Calculation suggests that for k = 1,2,3,..., the sequence a(n) (mod 2^k) is purely periodic with period 2^(k-1). For example, a(n) (mod 4) = (1,3,1,3,...) seems to be purely periodic with period 2 and a(n) (mod 8) = (1,3,5,7,1,3,5,7,...) seems to be purely periodic with period 4 (both checked up to n = 1000).
(End)

Crossrefs

Programs

  • Maple
    #A258377
    with(combinat):
    #recursively define row polynomials R(n,x) of A145901
    R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc:
    #define a family of sequences depending on an integer parameter k
    a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc:
    # display the case k = 1
    seq(a(n,1), n = 0..19);
  • Mathematica
    R[n_, x_] := R[n, x] = If[n==0, 1, 1+x*Sum[Binomial[n, i]*2^(n-i)*R[i, x], {i, 0, n-1}]];
    a[n_, k_] := a[n, k] = If[n==0, 1, 1/n*Sum[R[i+1, k]*a[n-1-i, k], {i, 0, n-1}]];
    a[n_] := a[n, 1];
    a /@ Range[0, 19] (* Jean-François Alcover, Oct 02 2019 *)

Formula

a(0) = 1 and for n >= 1, a(n) = 1/n*Sum_{i = 0..n-1} R(i+1,1)*a(n-1-i), where R(n,x) denotes the n-th row polynomial of A145901.
O.g.f.: A(z) = 1 + 3*z + 13*z^2 + 79*z^3 + 649*z^4 + ... satisfies A^2(z) = 1/(1 - z)*1/(1 - 2*z)*A(z/(1 - 2*z)).
O.g.f.: A(z) = exp( Sum_{k >= 1} R(k,1)*z^k/k ).
1 + z*A'(z)/A(z) = 1 + 3*z + 17*z^2 + 147*z^3 + 1697*z^4 + ... is the o.g.f. for A080253.
a(n) = Sum_{j=0..n} binomial(n,j) * A084783(n,n-j). - Alois P. Heinz, Jun 09 2023
a(n) ~ (n-1)! * 2^(n - 1/2) / log(2)^(n+1). - Vaclav Kotesovec, May 28 2025

A088679 a(n) = a(n-1)^2 * n / (n-1), n>1, a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 6, 48, 2880, 9953280, 115579079884800, 15266884236590834264309760000, 262212473580148912869121218589990322256745385164800000000
Offset: 0

Views

Author

Michael Somos, Oct 05 2003

Keywords

Comments

Unreduced numerators of: f(1) = 1, f(n) = f(n-1) + f(n-1)/(n-1). - Daniel Suteu, Jul 29 2016

Examples

			x + 2*x^2 + 6*x^3 + 48*x^4 + 2880*x^5 + 9953280*x^6 + ...
		

Crossrefs

Cf. A052129.

Programs

  • Mathematica
    Join[{0},RecurrenceTable[{a[1]==1,a[n]==a[n-1]^2 n/(n-1)},a,{n,10}]] (* Harvey P. Dale, Jan 16 2015 *)
  • PARI
    {a(n) = if( n<2, n>0, a(n-1)^2 * n / (n-1))}

Formula

a(n) is asymptotic to c^(2^n)*(1-1/n+2/n^2-6/n^3+25/n^4-137/n^5+...) where c=1.28906475773... and coefficient of n^-k is (-1)^k*A084784(k).
a(0) = 0, a(1) = 1, a(n) = n * Product i=1..(n-1) a(i) for n > 1. - Gerald McGarvey, Jun 11 2004 Corrected by Jaroslav Krizek, Oct 16 2009
a(n)^2 = n * A052129(n). Michael Somos, May 13 2012
a(n+1)/A052129(n) = n+1. - Daniel Suteu, Jul 29 2016
Showing 1-10 of 20 results. Next