Original entry on oeis.org
1, 60, 207360, 2407897497600, 318060088262309047173120000, 5462759866253102351440025387291465047015528857600000000
Offset: 4
A052129
a(0) = 1; thereafter a(n) = n*a(n-1)^2.
Original entry on oeis.org
1, 1, 2, 12, 576, 1658880, 16511297126400, 1908360529573854283038720000, 29134719286683212541013468732221146917416153907200000000
Offset: 0
a(3) = 3*a(2)^2 = 3*(2*a(1)^2)^2 = 3*(2*(1*a(0)^2)^2)^2 = 3*(2*(1*1^2)^2)^2 = 3*(2*1)^2 = 3*4 = 12.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 576*x^4 + 1658880*x^5 + 16511297126400*x^6 + ...
- S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Sung-Hyuk Cha, On the k-ary Tree Combinatorics.
- Chao-Ping Chen, Sharp inequalities and asymptotic series related to Somos' quadratic recurrence constant, Journal of Number Theory, 172 (2017), 145-159.
- Chao-Ping Chen and X. F. Han, On Somos' quadratic recurrence constant, Journal of Number Theory, Volume 166, September 2016, Pages 31-40.
- Olivier Golinelli, Remote control system of a binary tree of switches - II. balancing for a perfect binary tree, arXiv:2405.16968 [cs.DM], 2024. See p. 16.
- Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, arXiv:math/0506319 [math.NT], 2005-2006.
- Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008), 247-270.
- Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, 155 (2015), 36-45.
- Dawei Lu, Xiaoguang Wang, and Ruiqing Xu, Some New Exponential-Function Estimates of the Somos' Quadratic Recurrence Constant, Results in Mathematics 74(1) (2019), Article 6.
- Gergo Nemes, On the coefficients of an asymptotic expansion related to Somos' quadratic recurrence constant, Applicable Analysis and Discrete Mathematics, 5(1) (2011), 60-66.
- Jörg Neunhäuserer, On the universality of Somos' constant, arXiv:2006.02882 [math.DS], 2020.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
- Xu You and Di-Rong Chen, Improved continued fraction sequence convergent to the Somos' quadratic recurrence constant, Mathematical Analysis and Applications, 436(1) (2016), 513-520.
- Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
Cf.
A000142,
A001045,
A030450,
A088679,
A112302,
A116603,
A123851,
A123852,
A123853,
A123854,
A238462 (2-adic valuation).
-
Join[{1},RecurrenceTable[{a[1]==1,a[n]==n a[n-1]^2},a,{n,10}]] (* Harvey P. Dale, Apr 26 2011 *)
a[ n_] := If[ n < 1, Boole[n == 0], Product[ (n - k)^2^k, {k, 0, n - 1}]]; (* Michael Somos, May 24 2013 *)
a[n_] := Product[ k^(2^(n - k)), {k,1,n}] (* Jonathan Sondow, Mar 17 2014 *)
NestList[{#[[1]]+1,#[[1]]*#[[2]]^2}&,{1,1},10][[All,2]] (* Harvey P. Dale, Jul 30 2018 *)
-
{a(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k))}; /* Michael Somos, May 24 2013 */
A347289
Number of independent sets in the binomial tree of order n.
Original entry on oeis.org
2, 3, 8, 60, 3456, 11612160, 132090377011200, 17175244766164688547348480000, 291347192866832125410134687322211469174161539072000000000, 84034354923469245337680441503007090893711465882978424632224243601869256327175152475648504794972160000000000000000
Offset: 0
For n=5, the product formula is a(5) = 7 * 5 * 4^2 * 3^4 * 2^8 = 11612160.
Showing 1-3 of 3 results.
Comments