cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180261 a(n) = A088679(n) / 48.

Original entry on oeis.org

1, 60, 207360, 2407897497600, 318060088262309047173120000, 5462759866253102351440025387291465047015528857600000000
Offset: 4

Views

Author

Giovanni Teofilatto, Aug 28 2010

Keywords

Extensions

Edited by N. J. A. Sloane, Aug 28 2010
Offset corrected - R. J. Mathar, Oct 12 2010

A052129 a(0) = 1; thereafter a(n) = n*a(n-1)^2.

Original entry on oeis.org

1, 1, 2, 12, 576, 1658880, 16511297126400, 1908360529573854283038720000, 29134719286683212541013468732221146917416153907200000000
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 12 2002

Keywords

Comments

Somos's quadratic recurrence sequence.
Iff n is prime (n>2), the n-adic valuation of a(2n) is 3*A001045(n) (three times the values at the prime indices of Jacobsthal numbers), which is 2^n+1. For example: the 11-adic valuation at a(22) = 2049 = 3*A001045(11)= 683. 3*683 = 2^11+1 = 2049. True because: When n is prime, n-adic valuation is 1 at A052129(n), then doubles as n-increases to 2n, at which point 1 is added; thus A052129(2n) = 2^n+1. Since 3*A001045(n) = 2^n+1, n-adic valuation of A052129(2n) = 3*A001045(n) when n is prime. - Bob Selcoe, Mar 06 2014
Unreduced denominators of: f(1) = 1, f(n) = f(n-1) + f(n-1)/(n-1). - Daniel Suteu, Jul 29 2016

Examples

			a(3) = 3*a(2)^2 = 3*(2*a(1)^2)^2 = 3*(2*(1*a(0)^2)^2)^2 = 3*(2*(1*1^2)^2)^2 = 3*(2*1)^2 = 3*4 = 12.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 576*x^4 + 1658880*x^5 + 16511297126400*x^6 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==n a[n-1]^2},a,{n,10}]]  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Product[ (n - k)^2^k, {k, 0, n - 1}]]; (* Michael Somos, May 24 2013 *)
    a[n_] := Product[ k^(2^(n - k)), {k,1,n}] (* Jonathan Sondow, Mar 17 2014 *)
    NestList[{#[[1]]+1,#[[1]]*#[[2]]^2}&,{1,1},10][[All,2]] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k))}; /* Michael Somos, May 24 2013 */

Formula

a(n) ~ s^(2^n) / (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where s = 1.661687949633... (see A112302) and A116603. - Michael Somos, Apr 02 2006
a(n) = n * A030450(n - 1) if n>0. - Michael Somos, Oct 22 2006
a(n) = (a(n-1) + a(n-2)^2) * (a(n-1) / a(n-2))^2. - Michael Somos, Mar 20 2012
a(n) = product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 17 2014
A088679(n+1)/a(n) = n+1. -Daniel Suteu, Jul 29 2016

A347289 Number of independent sets in the binomial tree of order n.

Original entry on oeis.org

2, 3, 8, 60, 3456, 11612160, 132090377011200, 17175244766164688547348480000, 291347192866832125410134687322211469174161539072000000000, 84034354923469245337680441503007090893711465882978424632224243601869256327175152475648504794972160000000000000000
Offset: 0

Views

Author

Kevin Ryde, Sep 26 2021

Keywords

Comments

The binomial tree of order 0 is a single root vertex and order n>=1 is an order n-1 with another order n-1 joined as a subtree of the root.
Going by induction with this construction shows the number of sets where the root is in the set is with(n) = A052129(n), and the number where the root is not in the set is without(n) = A088679(n+1).
Among the total a(n), the respective proportions are without(n)/a(n) = (n+1)/(n+2) and with(n)/a(n) = 1/(n+2).
Also, a(n-1) is the number of maximum independent sets in binomial tree order n.
Tree n can be constructed from tree n-1 by adding a new child under each vertex. Each independent set in tree n-1 corresponds one-to-one with a maximum independent set in tree n by putting each new child in or out of the set opposite to its parent.

Examples

			For n=5, the product formula is a(5) = 7 * 5 * 4^2 * 3^4 * 2^8 = 11612160.
		

Crossrefs

Programs

  • PARI
    a(n) = my(P=1); for(k=2,n,P=sqr(P)*k); (n+2)*P;

Formula

a(n) = (n+2) * Product_{k=2..n} k^(2^(n-k)).
a(n) = A052129(n) + A088679(n+1).
a(n) = a(n-1)^2 - A052129(n-1)^2.
Showing 1-3 of 3 results.